Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Quantum Invariants of Manifolds and Homotopy Quantum Field Theory

Cel

This application proposes a period of mobility to place a researcher, currently making the transition to the research area of quantum topology, into a leading international research group in that field. The twin goals of the proposal are to provide the vehicle by which the applicant can complete his training in quantum topology, and to contribute new scientific results to the area. The scientific aim is to develop our understanding of quantum invariants of X-manifolds (that is, manifolds equipped with a map to a space X) and their role in quantum field theory. The importance of this topic stems from the fact that it is closely linked to Witten' s path integral formulation of topological quantum field theory and extends the framework and (rigorous) methods of Atria, Segal, Reshetikhin, Tureen and others to a more general setting. The focus will be on three aspects:
-To use shadow topology to define new invariants of X-manifolds
-To define and develop a theory of relative homogony QFT
-To study the geometry of HQFT and resulting applications The objectives will be met by combining the host' s expert knowledge of the methods and techniques of quantum groups, Lie bailers, humanization and topology with the researcher' s background knowledge in HQFT and grebes. Particular attention will be given throughout to examples based on quantum groups and to the case where the background space is the classifying space for G-bundles. Connections to mathematical physics will be pursued, especially to Churn-Simons gauge theory in the 2+1- dimensional case and to D-brine physics for the relative theory. By joining one of the top international research teams in the field, the applicant will: -Learn new methods and techniques in quantum groups and topology -Enhance links with the community -Diversify his expertise This will build on his existing knowledge and thus allow him to complete his training in quantum topology and establish himself in the area.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

FP6-2002-MOBILITY-5
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

EIF - Marie Curie actions-Intra-European Fellowships

Koordynator

UNIVERSITE LOUIS PASTEUR
Wkład UE
Brak danych
Adres
Rue Blaise Pascal 4
STRASBOURG
Francja

Zobacz na mapie

Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0