Opis projektu
Nowa era tłumaczenia maszynowego
Jednym z niedoścignionych celów dziedziny przetwarzania języka naturalnego jest automatyczne tłumaczenie języków ludzkich, jednak obecnie wykorzystywane podejścia, w tym między innymi statystyczne tłumaczenie maszynowe, często pomijają istotne informacje kontekstowe uwzględniane przez ludzkich tłumaczy. Efektem są tłumaczenia, w których brakuje istotnych informacji lub których treść nie oddaje zamysłu i zamiaru oryginału, co utrudnia zrozumienie tekstu, a w wielu przypadkach sprawia, że staje się bezużyteczny. Z tego powodu zespół finansowanego ze środków Europejskiej Rady ds. Badań Naukowych projektu MultiMT zamierza zastosować innowacyjne podejście oparte na informacjach multimodalnych. Badacze opracują metody uwzględniania w modelach tłumaczeniowych wskazówek kontekstowych, takich jak obrazy, powiązane dokumenty i metadane, a jako testowe zbiory danych posłużą wpisy na platformie Twitter i recenzje produktów. Ta przekrojowa inicjatywa pozwoli na połączenie wiedzy specjalistycznej dotyczącej przetwarzania języka naturalnego, rozpoznawania obrazów oraz uczenia maszynowego w celu opracowania wyjątkowego rozwiązania.
Cel
Automatically translating human language has been a long sought-after goal in the field of Natural Language Processing (NLP). Machine Translation (MT) can significantly lower communication barriers, with enormous potential for positive social and economic impact. The dominant paradigm is Statistical Machine Translation (SMT), which learns to translate from human-translated examples.
Human translators have access to a number of contextual cues beyond the actual segment to translate when performing translation, for example images associated with the text and related documents. SMT systems, however, completely disregard any form of non-textual context and make little or no reference to wider surrounding textual content. This results in translations that miss relevant information or convey incorrect meaning. Such issues drastically affect reading comprehension and may make translations useless. This is especially critical for user-generated content such as social media posts -- which are often short and contain non-standard language -- but applies to a wide range of text types.
The novel and ambitious idea in this proposal is to devise methods and algorithms to exploit global multi-modal information for context modelling in SMT. This will require a significantly disruptive approach with new ways to acquire multilingual multi-modal representations, and new machine learning and inference algorithms that can process rich context models. The focus will be on three context types: global textual content from the document and related texts, visual cues from images and metadata including topic, date, author, source. As test beds, two challenging user-generated datasets will be used: Twitter posts and product reviews.
This highly interdisciplinary research proposal draws expertise from NLP, Computer Vision and Machine Learning and claims that appropriate modelling of multi-modal context is key to achieve a new breakthrough in SMT, regardless of language pair and text type.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.
- nauki humanistycznejękoznawstwo i literaturoznawstwojęzykoznawstwo
- nauki przyrodniczeinformatykanauka o danychprzetwarzanie języka naturalnego
- nauki przyrodniczeinformatykasztuczna inteligencjarozpoznawanie obrazów
- nauki przyrodniczeinformatykasztuczna inteligencjauczenie maszynowe
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Program(-y)
Temat(-y)
System finansowania
ERC-STG - Starting GrantInstytucja przyjmująca
SW7 2AZ LONDON
Zjednoczone Królestwo