Cel
Machine learning has become a key part of scientific fields that produce a massive amount of data and that are in dire need of scalable tools to automatically make sense of it. Unfortunately, classical statistical modeling has often become impractical due to recent shifts in the amount of data to process, and in the high complexity and large size of models that are able to take advantage of massive data. The promise of SOLARIS is to invent a new generation of machine learning models that fulfill the current needs of large-scale data analysis: high scalability, ability to deal with huge-dimensional models, fast learning, easiness of use, and adaptivity to various data structures. To achieve the expected breakthroughs, our angle of attack consists of novel optimization techniques for solving large-scale problems and a new learning paradigm called deep kernel machine. This paradigm marries two schools of thought that have been considered so far to have little overlap: kernel methods and deep learning. The former is associated with a well-understood theory and methodology but lacks scalability, whereas the latter has obtained significant success on large-scale prediction problems, notably in computer vision. Deep kernel machines will lead to theoretical and practical breakthroughs in machine learning and related fields. For instance, convolutional neural networks were invented more than two decades ago and are today’s state of the art for image classification. Yet, theoretical foundations and principled methodology for these deep networks are nowhere to be found. The project will address such fundamental issues, and its results are expected to make deep networks simpler to design, easier to use, and faster to train. It will also leverage the ability of kernels to model invariance and work with a large class of structured data such as graphs and sequences, leading to a broad scope of applications with potentially groundbreaking advances in diverse scientific fields.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze informatyka sztuczna inteligencja uczenie maszynowe uczenie nienadzorowane
- nauki przyrodnicze informatyka sztuczna inteligencja rozpoznawanie obrazów rozpoznawanie obrazów
- nauki przyrodnicze informatyka sztuczna inteligencja rozpoznawanie obrazów wykrywanie obiektów
- nauki przyrodnicze informatyka sztuczna inteligencja uczenie maszynowe uczenie głębokie
- nauki przyrodnicze informatyka sztuczna inteligencja inteligencja obliczeniowa
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
ERC-STG - Starting Grant
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) ERC-2016-STG
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaInstytucja przyjmująca
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
78153 Le Chesnay Cedex
Francja
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.