Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Measuring with no tape

Cel

Society generates increasing amounts of data, which is both a resource and a challenge. The data reveal new insights that may potentially improve our livelihood, but their quantity renders such insights difficult to find. Machine learning techniques sift through the data looking for statistical patterns of interest to a given task. Due to an exponential growth in available data, these techniques enable us to automate difficult decisions, such as those needed for personalized medicine and self-driving cars.

NoTape note that machine learning techniques depend on a distance measure to determine which data points are similar and which are not. As this measure is difficult to choose, NoTape develop methods for estimating an optimal distance measure directly from data. Empirical evidence suggest that the optimal distance measure in one region of data space need not coincide with the optimal measure in another region, i.e.that the distance measure should locally adapt to the data. Local adaptability imply that the distance measure itself will be sensitive to noise in the data, and therefore should be described as a random variable. NoTape estimate distance measures as random Riemannian metrics and perform statistical data analysis accordingly. The notion of statistical computations with respect to an uncertain locally adaptive distance measure is uncharted territory, which need new algorithms for numerical integration and for solving differential equations.

As a guiding example, we estimate statistical models that reflect human perception. As perception processes are not fully understood, an optimal distance measure cannot be precisely estimated and the uncertainty of NoTape is needed.

The geometric nature of the developed methods ensure that attained models are interpretable by humans, which contrast current locally adaptive techniques. As society automate more decisions, interpretability is increasing important to ensure that the machine learning system can be trusted

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-STG - Starting Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2017-STG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

DANMARKS TEKNISKE UNIVERSITET
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 463 805,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 463 805,00

Beneficjenci (1)

Moja broszura 0 0