Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Constructing Intermolecular Potentials by Combining Physics and Machine Learning

Cel

Statistical-learning approaches are emerging as powerful alternatives to direct approaches to solving the electronic Schrödinger equation for determining the energy and other properties of molecules. Despite the recent success of methods like deep neural networks, these methods are limited to relatively small molecules. The issue is that predicting long-range intermolecular interactions with machine learning requires sampling the vast diversity of chemical environments that occur on an extended length scale, leading to a combinatorial explosion in the amount of training data that is required. To solve this problem, the functional form of the long-range interactions is taken from physical models, but the parameters that enter those expressions (atomic charges/multipoles; induced charges/multipoles; van der Waals coefficients) are determined by combining physical insight with machine learning. In this model, machine learning is used only to predict short-range phenomena like the dependence of atomic charges/multipoles on the molecular structure and the dependence of induced atomic charges/multipoles on the local electric field. The resulting machine-learned physically-motivated atomistic intermolecular potentials are valid for molecules of any size, but only require training data from small- and medium-sized molecules.
This development will provide molecular energies with the accuracy of quantum methods, at the computational cost of classical molecular mechanics approaches. This not only allows one to compute interaction energies for large molecules (e.g. the binding energy between a drug and a receptor), but allows the computational screening of molecules based on computed interaction energies. In addition to its transformative computational utility, this pioneering strategy—using physical insight to build a model, then using machine learning methods for the parameters in the model—can be extended to many other problems in chemistry, physics, and materials science.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2017

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

UNIVERSITE DU LUXEMBOURG
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 160 800,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 160 800,00
Moja broszura 0 0