Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Pathwise methods and stochastic calculus in the path towards understanding high-dimensional phenomena

Cel

Concepts from the theory of high-dimensional phenomena play a role in several areas of mathematics, statistics and computer science. Many results in this theory rely on tools and ideas originating in adjacent fields, such as transportation of measure, semigroup theory and potential theory. In recent years, a new symbiosis with the theory of stochastic calculus is emerging.

In a few recent works, by developing a novel approach of pathwise analysis, my coauthors and I managed to make progress in several central high-dimensional problems. This emerging method relies on the introduction of a stochastic process which allows one to associate quantities and properties related to the high-dimensional object of interest to corresponding notions in stochastic calculus, thus making the former tractable through the analysis of the latter.

We propose to extend this approach towards several long-standing open problems in high dimensional probability and geometry. First, we aim to explore the role of convexity in concentration inequalities, focusing on three central conjectures regarding the distribution of mass on high dimensional convex bodies: the Kannan-Lov'asz-Simonovits (KLS) conjecture, the variance conjecture and the hyperplane conjecture as well as emerging connections with quantitative central limit theorems, entropic jumps and stability bounds for the Brunn-Minkowski inequality. Second, we are interested in dimension-free inequalities in Gaussian space and on the Boolean hypercube: isoperimetric and noise-stability inequalities and robustness thereof, transportation-entropy and concentration inequalities, regularization properties of the heat-kernel and L_1 versions of hypercontractivity. Finally, we are interested in developing new methods for the analysis of Gibbs distributions with a mean-field behavior, related to the new theory of nonlinear large deviations, and towards questions regarding interacting particle systems and the analysis of large networks.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-STG - Starting Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2018-STG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

WEIZMANN INSTITUTE OF SCIENCE
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 308 188,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 308 188,00

Beneficjenci (1)

Moja broszura 0 0