Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Computational Hematopathology for Improved Diagnostics

Opis projektu

Sztuczna inteligencja pomaga w interpretacji próbek histopatologicznych

Każdego roku na nowotwory hematologiczne, takie jak białaczka i chłoniak, zapadają miliony dorosłych i dzieci, a wielu z tych chorych umiera. Diagnostyka opiera się na ocenie nieprawidłowości w komórkach, a cytolodzy są specjalnie szkoleni w celu wykrywania chorób na podstawie pojedynczych komórek krwi, szpiku kostnego i tkanek limfatycznych. Po 150 latach badań nad chorobami krwi klinicyści nadal polegają na wzrokowej ocenie preparatów histopatologicznych. Finansowany przez UE projekt CompHematoPathology wykorzystuje potencjał sztucznej inteligencji i modelowania matematycznego do diagnozowania złośliwych nowotworów hematologicznych. Korzystając z tych narzędzi i oznaczanych specjalistycznie danych obrazów, uczestnicy projektu CompHematoPathology planują opracować model oparty na danych w celu przewidywania dynamiki krwi w zdrowych i chorych tkankach. Efektem ma być zwiększenie wydajności, poprawa skuteczności diagnozy oraz bardziej efektywne leczenie pacjentów ze złośliwymi nowotworami hematologicznymi.

Cel

Identifying hematologic malignancies still relies on the time-consuming and subjective visual assessment of images. Every day, cytologists and pathologists are confronted with rare diagnostic cells, ever-increasing image data, and heterogeneous disease manifestations. Although we understand blood better than any other human tissue, we are unable to quantitatively predict a patient’s blood dynamics from a measurement. Diagnosis thus depends on rough staging schemes and the expertise and intuition of the clinician.
In my proposal, I address these challenges by establishing computational hematopathology, a combination of artificial intelligence algorithms and mathematical models that will boost the currently prevailing manual assessment. Based on my experience in using these methods for scrutinizing stem cell differentiation I will combine the power of deep learning and mathematical modeling with digitized and expertly annotated image data. My unique approach enables me to design and parametrize a data-driven model to predict hematopoietic dynamics in health and disease. Since the interpretation of digitized slides is becoming the clinical standard, novel algorithms for standardized disease classification and improved diagnosis are critically needed now.
This interdisciplinary project merges methods from digital pathology, machine learning, image processing, and mathematical modeling. ComHematoPathology will provide novel approaches and software tools for automated classification of hematopathology image data, allowing for reproducible and precise diagnosis at an unprecedented level. This will increase throughput and standardize the diagnosis of blood diseases and will thus improve the treatment of patients suffering from hematologic malignancies.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-COG - Consolidator Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2019-COG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 981 213,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 981 213,00

Beneficjenci (1)

Moja broszura 0 0