Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Zawartość zarchiwizowana w dniu 2024-04-30

Resistance genes to salmonella carrier-state in fowls

Cel

Salmonellosis is one of the major cause of human disease related to food consumption. Poultry products are the main source of human toxi-infections, mostly because of asymptomatic carrier-state (i.e persistence of Salmonella in apparently healthy fowls several weeks after contamination or experimental inoculation). Most often the serotype responsible for human food poisoning is Salmonella enteritidis. Caecal and ovarian Salmonella carrierstate will be considered. The former results in horizontal transmission of the bacteria and leads to human disease through contamination of the egg shell at the oviposition and of the carcass during evisceration. The latter results in vertical transmission of Salmonella and in yolk contamination. It has been shown that resistance to Salmonella infection and carrier-state was partly genetically controlled. Major genes of resistance to infection have been identified whereas genes controlling resistance to carrier-state are still unknown. Our objectives are therefore:
1. To discover which genes control caecal carrier-state after inoculation with Salmonella enteritidis,
2. To find out to what extent these genes also control resistance to ovarian carrier state after inoculation with Salmonella enteritidis,
3. To study the mode of action of these genes to help in their identification and their use for selection. In the longer term (beyond the limits of this project) these results will be transferred (by comparative genetics) to other animal species also susceptible to Salmonella but which lend themselves less favourably to genetics studies. We shall first measure in a commercial poultry line the effects of the resistance genes already identified in mouse (TASK 1) or mapped in fowls when studying resistance to mortality (TASK 2). As genes controlling resistance to carrier-state and resistance to mortality partly differ, carrier state QTL mapping will be achieved in TASK 3 to discover other genome regions (or Quantitative Trait _oci) involved. In TASK 4 we shall identify the differences in host response to Salmonella enteritidis between genetically resistant and susceptible animals: this will lead us to understand the mode of action of these genes and will contribute to their identification. In TASK 5 we shall determine to which extent genetic resistance will be efficient against other Salmonella strains or serotypes. At the end of this project it will be known how to perform marker assisted selection for increased resistance to carrier-state and which advantag to expect from such a genetic improvement.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Zaproszenie do składania wniosków

Data not available

System finansowania

CSC - Cost-sharing contracts

Koordynator

INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE
Wkład UE
Brak danych
Adres

37380 NOUZILLY
Francja

Zobacz na mapie

Koszt całkowity
Brak danych

Uczestnicy (7)