Cel
We aim to address some conceptual questions arising in kinetic theory with particular emphasis on the case where the interactions between particles are of the Newtonian type. This problem has applications in several astrophysical contexts, such as in the study of globular clusters, as well as being of intrinsic interest from a statistical mechanics point of view. It is known that the partition function describing an ensemble of point masses with a gravitational interaction is divergent owing to the strength of the interaction at short distances. This divergence prevents the system from reaching equilibrium in the classical sense. As a result, the time evolution of the density, as described by the appropriate Boltzmann equation, must be studied. We have reason to believe that this equation may possess a finite time singularity that would lead to the accumulation of particles in low velocity regions of the phase space. If true, this singularity would endow the system with an intrinsic dynamical mechanism for aggregation that we believe would be a sound basis for further study of structure formation. In order to more fully understand the physics under lying the dynamics we aim to extend the conventional mean field approach, which has been used to study this problem in the past, to include collision effects. This will enable us to understand how irreversibility, absent at the mean field level, enters problem. From the point of view of the applicant this project provides an opportunity to develop skills from the physicist's point of view which will differ in many ways from the training obtained in the past few years spent in a mathematics department. Although there are many connections with previous problems I have studied, training in many new concepts and methodologies will be necessary. Specific training will include, but will not be limited to, kinetic theory, numerical simulation methods for N-body problems and conceptual foundations of statistical physics. In addition, possible astrophysical applications of this work will provide a window into a completely new field. It is hoped that by spending some time as active researcher at an institution playing such a central role in European science as the ENS, that my academic horizons will be also broadened in more general terms, providing a strong foundation for a future career in research.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze nauki fizyczne mechanika klasyczna mechanika statystyczna
- nauki przyrodnicze matematyka
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Brak dostępnych danych
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Brak dostępnych danych
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Koordynator
75231 PARIS
Francja
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.