Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Rendering 3D images with attributes learned from 2D images via Deep Learning

Opis projektu

Zarys nowej ery w grafice komputerowej

Technologia zmienia na zawsze kształt nauczania w szkołach i uczenia się w ogólności. Dzięki zajęciom online, wirtualnym wycieczkom do muzeów czy nawet coraz bogatszym doznaniom podczas grania w gry komputerowe wkraczamy na nieznany sobie do tej pory obszar. W tym kontekście uruchomiony zostaje finansowany ze środków UE projekt 3DIS-NN, którego celem jest wprowadzenie na rynek technologii syntezy obrazów trójwymiarowych (3DIS), dzięki której możliwe stałoby się renderowanie obiektów z różnych kątów. Rozwiązanie to znalazłoby liczne zastosowania na polu grafiki komputerowej czy widzenia komputerowego. Technologia 3DIS, która zasadniczo umożliwia rozłożenie atrybutów obiektu i ponowne ich złożenie za pomocą narzędzia renderującego na potrzeby przeprowadzenia syntezy, może dać nam sposobność poznania pewnych cech obrazu, które później będzie można wykorzystać w skutecznej analizie pozyskiwanych obrazów – dziedzinie z zakresu sztucznej inteligencji, która obecnie sprawia najwięcej problemów.

Cel

3D (3-dimensional) Image Synthesis (3DIS) is a technology to render objects from different views which enables numerous applications in computer graphics and computer vision. As the digital world is becoming more crucial especially in the times of pandemic, 3DIS can provide tools for online classes, virtual social tours, improved gaming experience and simulators for robotics by providing realistic virtual 3D environments. Furthermore, 3DIS by disentangling the attributes of objects and entangling them via a renderer for synthesize, can provide a technology to learn useful features from our visual world that can be used for video understanding, one of the biggest goals of artificial intelligence. Here, I propose 3DIS-NN, a set of methods to improve the quality of 3DIS with deep neural networks (DNNs), and bring it close to the production quality, which will contribute to the European Union’s Future and Emerging Technology ambitions of Horizon Europe. Learning 3DIS from 2D images with deep learning is a challenging topic due to its inherent ambiguity. 3DIS-NN will enable high-quality 3DIS results by i) creating a dataset with weak labels to feed the data-hungry DNNs for better accuracy, ii) improving robustness of 3D geometry and texture prediction from images, iii) handling the impurities in segmentation of objects with a novel design of architecture, and iv) providing a tool to further close the domain gap in renderers and real images. This interdisciplinary proposal which is at the intersection of deep learning and computer graphics will be carried out at under the supervision of Prof. Ugur Gudukbay who is an expert in computer graphics. In terms of career developments, this proposal will consolidate and accelerate my career on the international landscape scene as a pioneer lead authority in the new cross-disciplinary area of “deep learning & computer graphics”.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2020

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

BILKENT UNIVERSITESI VAKIF
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 145 355,52
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 145 355,52
Moja broszura 0 0