Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Reliable Epidemic monitoring And Control under geographic and demographic heTerogeneities

Opis projektu

Lepsze strategie monitorowania epidemii i reagowania na nie za pomocą sieci neuronowych opartych na fizyce

Sieci neuronowe oparte na fizyce (ang. physics-informed neural network, PINN) potrafią płynnie integrować dane i matematyczne modele fizyki, umożliwiając przewidywanie rozwiązania dalekiego od punktów danych eksperymentalnych nawet w złożonych, niepewnych i tylko częściowo zrozumiałych scenariuszach. Dzięki temu wyjątkowo dobrze nadają się one do przewidywania rozwoju epidemii w różnych skalach czasowych i przestrzennych, ułatwiając opracowywanie odpowiedniej polityki. Wspierany w ramach programu działań „Maria Skłodowska-Curie” projekt REACT wykorzysta sieci PINN do integracji historycznych danych epidemiologicznych z fizycznym modelem rozprzestrzeniania się epidemii. W połączeniu z metodami systemowo-teoretycznymi podejście to umożliwi monitorowanie epidemii w pętli zamkniętej, które pozwala na skuteczne rozwiązanie problemu niepewności, poddając algorytm estymacji walidacji w czasie rzeczywistym poprzez przewidywanie przyszłych danych i odpowiednie dostosowanie modelu epidemii.

Cel

The current COVID-19 crisis has highlighted the failure of existing epidemic monitoring techniques in timely predicting the epidemic situation and facilitating efficient policy recommendations. Because of being open-loop or linearization-based, these techniques cannot handle model and data uncertainties effectively. Designing a feedback mechanism to enable reliable, closed-loop epidemic monitoring is crucial but challenging because of the nonlinearity and heterogeneities of the epidemic spread process. The control mechanisms for epidemic mitigation are well-known, such as testing, lockdown, social distancing, etc. However, when, where, and to what extent should the health authority implement these policies depends on the accurate estimation and forecasting of the epidemic situation, which is very difficult with the classic observer design techniques. To alleviate the difficulties posed by these observers, an interdisciplinary approach of physics-informed neural network (PINN) in combination with system-theoretic tools is proposed in this project for closed-loop epidemic monitoring that can effectively cope with uncertainties. The task of PINN is to estimate the unknown nonlinearity (i.e. disease transmission rate) and epidemic parameters by using both the physics of epidemic spread (i.e. model) and the past epidemiological data. The closed-loop structure copes with the uncertainties and validates the estimation algorithm in real-time by predicting the future data and adjusting the epidemic model accordingly. The information received by the PINN-based observer will be utilized by the optimal controller to devise optimal policy recommendations under socio-economic constraints for epidemic mitigation. The closed-loop epidemic monitoring and control technique will be integrated to understand the geographic and demographic heterogeneities during epidemic outbreaks, which will significantly enhance the effectiveness of optimal policies.

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2021-PF-01

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

KUNGLIGA TEKNISKA HOEGSKOLAN
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 305 928,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Partnerzy (1)

Moja broszura 0 0