Opis projektu
Nowe podejście do rozwiązania lorentzowskiego problemu Calderóna
Matematyczna teoria problemów odwrotnych jest interdyscyplinarną dziedziną badań, która leży pomiędzy matematyką czystą i stosowaną. Jednym z ważnych problemów odwrotnych jest lorentzowski problem Calderóna. W porównaniu z podobnymi problemami odwrotnymi dla nieliniowych równań falowych lorentzowski problem Calderóna nie jest dobrze poznany. Zespół finansowanego ze środków UE projektu LoCal opracuje nowe podejście do rozwiązania lorentzowskiego problemu Calderóna. Zbadane zostaną warunki geometryczne, które to umożliwią, to znaczy nośniki, które są widoczne dla fal sondujących, a także kontrprzykłady, które naruszają takie warunki, prowadząc do niewidzialności. Aby osiągnąć zamierzony cel, badacze opracują techniki leżące na styku równań różniczkowych cząstkowych i geometrii, pokrewnych teorii sterowania i ogólnej teorii względności.
Cel
This project addresses questions in the mathematical theory of inverse problems, a research field at the interface between pure and applied mathematics. The techniques that will be developed lie at the intersection of partial differential equations and geometry, with affinity to control theory and general relativity.
The Lorentzian Calderon problem is central to the proposal. A physical interpretation of the problem asks us to recover a moving medium given data generated by acoustic waves probing the medium, and seen from the mathematical point of view, it is the simplest formulation of an inverse boundary value problem for a linear wave equation that is expressed in a generally covariant fashion. The project explores the geometric conditions under which the problem can be solved, that is, media that are visible to probing waves, as well as counterexamples violating such conditions, leading to invisibility.
The Lorentzian Calderon problem is poorly understood in comparison to similar inverse problems for nonlinear wave equations. One of the guiding ideas in the project is to adapt techniques from the theory of these problems, developed recently by PI and others, to the Lorentzian Calderon problem. Another source of inspiration is the recent solution of the Lorentzian Calderon problem under curvature bounds by PI and his coauthors.
The project develops a new approach to solve the Lorentzian Calderon problem, and this may also lead to a breakthrough in the resolution of the Riemannian version of the problem, often called the anisotropic Calderon problem. The latter problem has remained open for more than 30 years. In addition to being the hyperbolic analogue of this well-known problem, the Lorentzian Calderon problem can be viewed as a generalization of the even more classical inverse problem studied by Gelfand and Levitan in the 1950s.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
HORIZON.1.1 - European Research Council (ERC)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
HORIZON-ERC - HORIZON ERC Grants
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) ERC-2022-COG
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaInstytucja przyjmująca
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
00014 HELSINGIN YLIOPISTO
Finlandia
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.