European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Efficient, safe, and cost-efficient RNA delivery vehicles for hard-to-transfect pre-clinical and therapeutic cells.

Cel

Human induced pluripotent stem cells (hIPSCs) have revolutionized the study of cell type-specific processes and the generation of organoids, tissues, and therapeutic cells for biomedical purposes.
However, the genetic modification of these cells, along with other difficult-to-transfect cells, poses a major challenge for performing high-throughput gene reporter and genetic perturbation assays and prevents us from fully exploiting the potential of hIPSCs.

Existing gene delivery techniques, such as lentiviruses or lipid nanoparticles, suffer from limitations in precision, biosafety, efficacy, and high production costs.
To overcome these limitations, our team has developed a novel approach called inteRNAlizers, which offers a genetically controlled cellular production process for non-viral RNA delivery systems.
inteRNAlizers can enable transient gene expression and modular gene editing in virtually any cell type, including differentiated hIPSC and T cells. The method demonstrates high efficacy and cost efficiency while maintaining biosafety levels comparable to S1 standards.

We aim to position inteRNAlizers as a promising alternative to lentiviruses and lipid nanoparticles, opening up new possibilities in gene delivery applications for preclinical research and therapeutic cell systems.

Słowa kluczowe

Instytucja przyjmująca

TECHNISCHE UNIVERSITAET MUENCHEN
Wkład UE netto
€ 150 000,00
Adres
Arcisstrasse 21
80333 Muenchen
Niemcy

Zobacz na mapie

Region
Bayern Oberbayern München, Kreisfreie Stadt
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity
Brak danych

Beneficjenci (1)