Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Nonlinear Analysis in Mathematical Models: Heat Damage, Stability of Nonlinear Waves and Spectral-Scattering Problems

Cel

The major obstacle in mathematical modeling in science that is also responsible for the
variety of different phenomena appearing is its nonlinear nature.
Richard Kollar's field of research is nonlinear analysis that includes mathematical modeling and the study of existence and stability of coherent structures
as nonlinear waves, vortices, and defects, appearing in models ranging from nonlinear optics, or condensed matter physics to chemical processes in human brain. The value of these problems lies not only in their far-reaching consequences
for applications, but also in the interesting mathematics underlying them.
The goal of the three projects in this proposal is to gain insight by studying interesting particular applied problems, and apply it to build and simplify the general theory.

The goal of the first project is to study heat damage of cells, particularly during burn injuries and hyperthermic cancer treatments. Based on his current research, Kollar proposes to extend his mathematical model to include important effects as increased vascular permeability or three-dimensional nonhomogeneous environment.

In the second project Kollar, in collaboration with R. Pego, B. Deconinck and N. Kutz, studies stability of certain nonlinear waves. Besides other investigations it requires an extension of the Evans function technique for detection of unstable eigenvalues to three-dimensional and non-local problems.

The third project, in collaboration with P. Miller, proposes to use Krein signature and Pontryagin spaces in the study of inverse scattering-spectral problems. The idea discussed in the proposal is to use Krein signature to restrict the position of spectra for potentials satisfying a single-lobe condition introduced by Klaus and Shaw.

A prominent common feature of this proposal is a very novel approach to classical problems and the unification of different theories.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

FP7-PEOPLE-IRG-2008
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MC-IRG - International Re-integration Grants (IRG)

Koordynator

UNIVERZITA KOMENSKEHO V BRATISLAVE
Wkład UE
€ 100 000,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0