Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-05-28

Gröbner strata in multigraded Hilbert schemes

Cel

The aim of the present research project is to establish new connections between algebraic geometry, commutative algebra and combinatorics. The geometric objects of study are Hilbert schemes. These schemes are highly relevant in algebraic geometry, as they form the basis for the construction of numerous moduli spaces. The algebraic objects of study are Gröbner bases. They are the core of great parts of constructive methods in commutative algebra. The combinatorial objects of study are standard sets. These are central to the theory of Gröbner bases, as there is a canonical bijection between monomial ideals and standard sets. I use a newly defined addition of standard sets, which establishes a link between geometry, algebra, and combinatorics. I will construct a new moduli space which parametrises all reduced Gröbner bases in a polynomial ring having a prescribed standard set. I will embed this moduli space as a locally closed subscheme into various multigraded Hilbert schemes after Haiman and Sturmfels, and decompose a given multigraded Hilbert scheme as a coproduct of moduli spaces of reduced Gröbner bases, where the union is indexed by a set of standard sets. Moreover, I will pursue the question whether the above described decomposition into locally closed strata is a stratification of the multigraded Hilbert scheme or not. In the case where the given standard set is finite, I have already constructed the moduli space of all reduced Gröbner bases with the given standard set. I have aldready embedded this moduli space canonically into the Hilbert scheme of points. Now I will study these spaces in more detail, using the lexicographic order on the polynomial ring. I shall prove a conjecture by Sturmfels which establishes a close connection between the geometry of moduli spaces of reduced Gröbner bases on the one hand and the combinatorics of standard sets on the other.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

FP7-PEOPLE-2009-IOF
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MC-IOF - International Outgoing Fellowships (IOF)

Koordynator

UNIVERSITAET BIELEFELD
Wkład UE
€ 227 299,90
Adres
UNIVERSITAETSSTRASSE 25
33615 Bielefeld
Niemcy

Zobacz na mapie

Region
Nordrhein-Westfalen Detmold Bielefeld, Kreisfreie Stadt
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0