Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Complex manifolds, foliations by complex leaves and their deformations

Cel

My proposal is to investigate some new aspects of the geometry of complex manifolds, foliations by complex leaves and their deformations. Emphasis is put on the relations between these three themes.

The basic objects of complex geometry are compact complex manifolds. However, only very special classes are well understood. And the only theory which applies to the general case is Kodaira-Spencer theory of deformations. To each structure of a compact complex manifold it associates a finite-dimensional space, called Kuranishi space, containing all the small deformations of this initial structure. Although it is a very classical theory, almost nothing is known about the geometry of this space. Last year, I discovered that it has a natural foliated structure and I want to study it more thoroughly.

On the other hand, Kuranishi spaces exist for transversely holomorphic foliations, which form a generalization of complex structures. There is however another natural generalization, that of foliation by complex leaves. Now in this case there is no Kuranishi space (the finite-dimensionality fails). I have some precise ideas to construct (finite-dimensional) Kuranishi spaces in a generalized sense.

Finally I also want to introduce a notion of geometric rigidity, which is better adapted to the case of a foliation than the classical notion of rigidity.

As a researcher, I work for twelve years on the geometry and topology of compact complex manifolds. But to achieve these goals, I need to strengthen my training in deformation theory. So I plan to spend two years at CRM, Barcelona, under the guidance of Marcel Nicolau, an expert in deformations of complex manifolds and transversely holomorphic foliations. I could also benefit from the intense mathematical activity of the CRM, especially in complex analysis and geometry.

Achieving these goals would open new lines of research and qualify me as a leading expert in the field. Last but not least, I could look for another position.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

FP7-PEOPLE-2010-IEF
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MC-IEF - Intra-European Fellowships (IEF)

Koordynator

Consorci Centre de Recerca Matematica
Wkład UE
€ 223 280,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0