Cel
"Moduli of curves with symmetries:determine the stable irreducible components of the moduli space of curves of genus g with an action of a finite group G, using a new homological invariant. Stable means: for g sufficiently large, or for sufficiently large numerical branching function. Higher homological stabilization for these moduli spaces. Faithful actions of the absolute Galois group on moduli spaces of marked varieties, triangle curves, varieties isogenous to a product, Beauville surfaces. Change of fundamental group. Fields of definitions of triangle curves and the scheme representing triangle curves.
Uniformization: characterization of proj. var. whose universal cover is a given bounded symmetric domain (Catanese-Di Scala did the case of tube domains). Orbifold Uniformization: where we have a quotient of a non free action, or a noncompact such quotient. Classification of surfaces with genus 0 having the bidisk as universal cover. Symmetric differentials and fundamental groups of some ball quotients.
Topological methods in Moduli Theory: strong, weak and pseudo rigidity for the Inoue type varieties of Bauer and Catanese (free quotients of ample divisors on projective varieties which are K(\pi, 1)). With Lonne and Wajnryb, using methods by Auroux and Katzarkov: study canonical symplectic structures and deformation types of some simply connected algebraic surfaces, determining braid group factorizations associated to subcanonical projections. More general bicoloured braid factorizations associated to general projections. Teichmueller space of certain algebraic surfaces.
Classification and Moduli of surfaces with low invariants. Surfaces of geometric genus 0: new construction techniques, structure of fundamental groups, moduli spaces, existence questions for surfaces with certain invariants, for homotopy quadrics, structure of fake quadrics."
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
ERC-2013-ADG
Zobacz inne projekty w ramach tego zaproszenia
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Instytucja przyjmująca
95447 BAYREUTH
Niemcy
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.