Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-05-30

The physical basis of cellular mechanochemical <br/>control circuits

Cel

Biological cells possess a chemical “sense of smell” and a physical “sense of touch”. Structure, dynamics, development, differentiation and even apoptosis of cells are guided by physical stimuli feeding into a regulatory network integrating biochemical and mechanical signals. Cells are equipped with both, force-generating structures, and stress sensors including force-sensitive structural proteins or mechanosensitive ion channels. Pathways from force sensing to structural and transcriptional controls are not yet understood.

The goal of the proposed interdisciplinary project is to quantitatively establish such pathways, connecting the statistical physics and the mechanics to the biochemistry. We will measure and model the complex non-equilibrium mechanical structures in cells, and we will study how external and cell-generated forces activate sensory processes that (i) act (back) on the morphology of the cell structures, and (ii) lead to cell-fate decisions, such as differentiation. The most prominent stress-bearing and -generating structures in cells are actin/myosin based, and the most prominent mechanoactive and -sensitive cell types are fibroblasts in connective tissue and myocytes in muscle. We will first focus on actin/myosin bundles in fibroblasts and in sarcomeres in developing heart muscle cells. We will observe cells under the influence of exactly controlled external stresses. Forces on suspended single cells or cell clusters will be exerted by laser trapping and sensitively detected by laser interferometry. We furthermore will monitor mechanically triggered transcriptional regulation by detecting mRNA in the nucleus of mouse stem cells differentiating to cardiomyocytes. We will develop fluorescent mRNA sensors that can be imaged in cells, based on near-IR fluorescent single-walled carbon nanotubes.

Understanding mechanical cell regulation has far-ranging relevance for fundamental cell biophysics, developmental biology and for human health.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: https://op.europa.eu/pl/web/eu-vocabularies/euroscivoc.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2013-ADG
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-AG - ERC Advanced Grant

Instytucja przyjmująca

GEORG-AUGUST-UNIVERSITAT GOTTINGEN STIFTUNG OFFENTLICHEN RECHTS
Wkład UE
€ 2 425 200,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0