Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

The Quantum Geometric Langlands Topological Field Theory

Opis projektu

Nowa topologiczna kwantowa teoria pola: świeże dane oraz niezmienniki węzłów i 3-rozmaitości

Kwantowa teoria pola zapewnia teoretyczne podstawy badania fizyki cząstek elementarnych. Dzięki topologicznym kwantowym teoriom pola (ang. topological quantum field theories, TQFT) możliwe jest opisanie przestrzeni, których właściwości nie zmieniają się pod wpływem ciągłych deformacji, takich jak niedawno odkryta klasa materiałów kwantowych o egzotycznych właściwościach (materiały topologiczne), w tym izolatory topologiczne. Zespół finansowanego przez Europejską Radę ds. Badań Naukowych projektu QuantGeomLangTFT wykorzysta nowatorską koncepcję 4D-TQFT, kwantową geometryczną korespondencję Langlandsa (ang. Quantum Geometric Langlands, QGL) oraz inne techniki w zakresie pochodnej geometrii algebraicznej i grup kwantowych do stworzenia konstrukcji kwantowania rozmaitości znaków. Zostaną one wykorzystane do zgłębienia geometrycznej teorii reprezentacji grup kwantowych i podwójnych afinicznych algebr Heckego oraz do stworzenia nowych niezmienników węzłów i 3-rozmaitości.

Cel

We will use modern techniques in derived algebraic geometry, topological field theory and quantum groups to construct quantizations of character varieties, moduli spaces parameterizing G-bundles with flat connection on a surface. We will leverage our construction to shine new light on the geometric representation theory of quantum groups and double affine Hecke algebras (DAHA's), and to produce new invariants of knots and 3-manifolds.

Our previous research has uncovered strong evidence for the existence of a novel construction of quantum differential operators -- and their extension to higher genus surfaces -- in terms of a four-dimensional topological field theory, which we have dubbed the Quantum Geometric Langlands (QGL) theory. By construction, the QGL theory of a surface yields a quantization of its character variety; quantum differential operators form just the first interesting example. We thus propose the following long-term projects:

1. Build higher genus analogs of DAHA's, equipped with mapping class group actions -- thereby solving a long open problem -- by computing QGL theory of arbitrary surfaces; recover quantum differential operators and the (non-degenerate, spherical) DAHA of G, respectively, from the once-punctured and closed two-torus.
2. Obtain a unified construction of both the quantized A-polynomial and the Oblomkov-Rasmussen-Shende invariants, two celebrated -- and previously unrelated -- conjectural knot invariants which have received a great deal of attention.
3. By studying special features of our construction when the quantization parameter is a root of unity, realize the Verlinde algebra as a module over the DAHA, shedding new light on fundamental results of Cherednik and Witten.
4. Develop genus one, and higher, quantum Springer theory -- a geometric approach to constructing representations of quantum algebras -- with deep connections to rational and elliptic Springer theory, and geometric Langlands program.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-STG - Starting Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2014-STG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

THE UNIVERSITY OF EDINBURGH
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 100 947,50
Adres
OLD COLLEGE, SOUTH BRIDGE
EH8 9YL Edinburgh
Zjednoczone Królestwo

Zobacz na mapie

Region
Scotland Eastern Scotland Edinburgh
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 100 947,50

Beneficjenci (1)

Moja broszura 0 0