Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Spectral Theory of Non-Selfadjoint Markov Processes with Applications in Self-Similarity, Branching Processes and Financial Mathematics

Cel

The project contextually sets up a novel framework to study the spectral-theoretical properties of classes of non-selfadjoint (NSA) operators related to Markov processes (MP) via their intertwining to a continuous path selfadjoint (SA) MP. Conceptually, this means that the jumps of each class of NSA MP can be considered a perturbation of one SA MP realized by an intertwining kernel. This approach can have far-reaching consequences for understanding classes of MP as the reduction to SA MP leads to well-studied objects whereas the spectral theory of NSA operators is far from understood. The price of that is the non-invertability of the intertwining kernels. This framework is explored and crystallized by a challenging,
detailed spectral-theoretical study of an enormous class of NSA operators directly arising from the key phenomenon of self-similarity and in duality from branching. This is achieved by a synergy of research fields complementing each other to obtain the spectral properties of those operators culminating in the derivation of spectral expansions of the generated semigroups. As a result of this synergy, a number of tools and techniques with impact, including applications to fields beyond the scope of the project, are derived. A particular development in the area of recurrent equations and special functions will be unexpectedly exploited to the effect of a comprehensive theoretical and applied study, including numerical schemes, of
key quantities in financial and insurance mathematics such as Asian options and perpetuities. A training-through-research in line with the fellow’s affiliation to the host institution and the proposed secondment will critically contribute to the optimal completion of the proposal in terms of time, scope and quality.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MSCA-IF-EF-ST - Standard EF

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2014

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

INSTITUTE OF MATHEMATICS AND INFORMATICS AT THE BULGARIAN ACADEMY OF SCIENCE
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 128 994,00
Adres
ACAD G BONCHEV STREET BL 8
1113 Sofia
Bułgaria

Zobacz na mapie

Region
Югозападна и Южна централна България Югозападен София (столица)
Rodzaj działalności
Research Organisations
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 128 994,00
Moja broszura 0 0