Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Non Uniform Hyperbolicity in Global Dynamics

Cel

An important part of differentiable dynamics has been developed from the uniformly hyperbolic systems. These systems have been introduced by Smale in the 60's in order to address chaotic behavior and are now deeply understood from the qualitative, symbolic and statistic viewpoints. They correspond to the structurally stable dynamics. It appeared that large classes of non-hyperbolic systems also exist. Since the 80's, different notions of relaxed hyperbolicity have been introduced: non-uniformly hyperbolic measures, partial hyperbolicity,... They allowed to extend the previous approach to other families of systems and to handle new examples of dynamics: the fine description of the dynamics of Hénon maps for instance.
The development of local perturbative technics have brought a rebirth for the qualitative description of generic systems. It also opened the door to describe more globally the spaces of differentiable dynamics. For instance, it allowed recent progresses towards the Palis conjecture which characterizes the absence of uniform hyperbolicity by the homoclinic bifurcations — homoclinic tangencies or heterodimensional cycles. We propose in the present project to develop technics for realizing more global perturbations, yielding a breakthrough in the subject. This would settle this conjecture for C1 diffeomorphisms and imply other classification results.

These past years we have understood how qualitative dynamics of generic systems decompose into invariant pieces. We are now ready to describe more precisely the dynamics inside the pieces. We propose to combine these new geometrical ideas to the ergodic theory of non-uniformly hyperbolic systems. This will improve significantly our understanding of general smooth systems (for instance provide existence and finiteness of physical measures and measures of maximal entropy for new classes of systems beyond uniform hyperbolicity).

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-ADG - Advanced Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2015-AdG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 229 255,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 229 255,00

Beneficjenci (1)

Moja broszura 0 0