Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Higher Co-dimension Singularities: Minimal Surfaces and the Thin Obstacle Problem

Cel

Singular solutions to variational problems and to partial differential equations are naturally ubiquitous in many contexts, and among these minimal surfaces theory and free boundary problems are two prominent examples both for their analytical content and their physical interest.
A crucial aspect in this regard is the co-dimension of the objects under consideration: indeed, many of the analytical and geometric principles which are valid for minimal hypersurfaces or regular points of the free boundary do not apply to higher co-dimension surfaces or singular free boundary points.

The aim of this project is to investigate some of the most compelling questions about the singularities of two classical problems in the geometric calculus of variations in higher co-dimension:

I. Mass-minimizing integer rectifiable currents, i.e. solutions to the Plateau problem of finding the surfaces of least area, attacking specific conjectures about the structure of the singular set, most prominently the boundedness of its measure.

II. The thin obstacle problem, consisting in minimizing the Dirichlet energy (or a variant of it) among functions constrained above an obstacle that is assigned on a lower dimensional space, with the purpose of answering some of the main open questions on the singular free boundary points.

The main unifying theme of the project is the central role played by geometric measure theory, which underlines various common aspects of these two problems and makes them suited to be treated in an unified framework.
Although these are classical questions with a long tradition, our knowledge about them is still limited and their investigation is among the most challenging issues in regularity theory. This is the central focus of the project, with the final goal to develop suitable analytical techniques that provides valuable insights on the mathematics at the basis of higher co-dimension singularities, eventually fruitful in other geometric and analytical settings.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-STG - Starting Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2017-STG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 341 250,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 341 250,00

Beneficjenci (2)

Moja broszura 0 0