Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Phase Transitions in Random Constraint Satisfaction Problems

Cel

The systematic investigation of random discrete structures and processes was initiated by Erdős and Rényi in a seminal paper about random graphs in 1960. Since then the study of such objects has become an important topic that has remarkable applications not only in combinatorics, but also in computer science and statistical physics.

Random discrete objects have two striking characteristics. First, they often exhibit phase transitions, meaning that only small changes in some typically local control parameter result in dramatic changes of the global structure. Second, several statistics of the models concentrate, that is, although the support of the underlying distribution is large, the random variables usually take values in a small set only. A central topic is the investigation of the fine behaviour, namely the determination of the limiting distribution.

Although the current knowledge about random discrete structures is broad, there are many fundamental and long-standing questions with respect to the two key characteristics. In particular, up to a small number of notable exceptions, several well-studied models undoubtedly exhibit phase transitions, but we are not able to understand them from a mathematical viewpoint nor to investigate their fine properties. The goal of the proposed project is to study some prominent open problems whose solution will improve significantly our general understanding of phase transitions and of the fine behaviour in random discrete structures. The objectives include the establishment of phase transitions in random constraint satisfaction problems and the analysis of the limiting distribution of central parameters, like the chromatic number in dense random graphs. All these problems are known to be difficult and fundamental, and the results of this project will open up new avenues for the study of random discrete objects, both sparse and dense.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-COG - Consolidator Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2017-COG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 219 462,00
Adres
GESCHWISTER SCHOLL PLATZ 1
80539 MUNCHEN
Niemcy

Zobacz na mapie

Region
Bayern Oberbayern München, Kreisfreie Stadt
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 219 462,00

Beneficjenci (1)

Moja broszura 0 0