Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Stochastic Ericksen-Leslie Equations

Cel

The objective of the research proposed in this project is to give a sound mathematical description of the noise-induced Fréedericksz transition in Nematic Liquid Crystal (NLC) with general geometry configurations. To this aim we will: 1) solve some important and difficult open mathematical problems related to the stochastic stochasic Ericksen-Leslie Equations (SELEs) which basically describe the dynamics of liquid crystals with stochastic perturbations, and 2) give a rigorous mathematical proof of the noise-induced Fréedericksz transition in NLC. In particular, we will establish the existence and uniqueness solution of the Ginzburg-Landau (GL) approximation of SELEs. By using Large Deviations Principle (LDP) theory and the de Giorgi Gamma-convergence we will prove that the action functional of the SELEs with small spatially converges to the action functional of the SELEs with spatially white noise. We will rigorously justify the probabilistic interpretation of the results in terms of the asymptotics of the mean exit time from a neighbourhood of an attracting stationary solution, a hint to noise-induced Fréedericksz transition. By using again LDP theory will rigorously show that in the presence of small noise there is a positive probability of transition between the attraction domains of the stationary solutions for the deterministic system; this is a rigorous mathematical proof of the noise-induced Freédricks’s transition. We will also prove the existence and uniqueness of an invariant measure which satisfies a LDP. The latter result confirms that in the long run the noise still induces transition between equilibria. Finally, we aim to prove the existence and uniqueness of solution of the SELEs, and if time permits transfer results obtained for the GL approximation of SELES to the original SELEs.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2017

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

UNIVERSITY OF YORK
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 195 454,80
Adres
HESLINGTON
YO10 5DD YORK NORTH YORKSHIRE
Zjednoczone Królestwo

Zobacz na mapie

Region
Yorkshire and the Humber North Yorkshire York
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 195 454,80
Moja broszura 0 0