Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Information Theory beyond Communications: Distributed Representations and Deep Learning

Cel

Deep learning is an enormously successful recent paradigm with record-breaking performance in numerous applications. Individual autoencoders (AEs) of a multilayer neural network are trained to convert high-dimensional inputs into low-dimensional codes that allow the reconstruction of the input. Although some explanations appear to be solidly grounded, there is no mathematical understanding of the AE learning process. This project is a collaborative endeavor of researchers with strong complementary backgrounds. Its main innovation is the idea to capitalize on powerful and fertile concepts from information theory (expertise of researcher) in order to advance the state of the art in deep learning (expertise of supervisor at TC). The innovative research work is motivated by our recent insight that there is an intimate relationship between AEs, generative adversarial nets and the information bottleneck method. This method is a model-free approach for extracting information from observed variables that are relevant to hidden representations or labels and will serve as basic building block for an information theory of representation learning. The planned objectives are split into 3 workpackages: 1) information-theoretic criteria and statistical tradeoffs for extracting good representations, 2) structured architectures/algorithms for learning, 3) use of stochastic complexity to assess the descriptive power (model selection) of deep neural networks. Accomplishing the challenging goals of this proposal requires a variety of methodologies with a rich potential for transfer of knowledge between the involved fields of information theory, statistics and machine learning. Our new framework is expected to bridge the gap between theory and practice to facilitate a more thorough understanding and hence improved design of deep learning architectures. The fellow researcher is coordinating the LIA Lab of the CNRS (started in 2017) where he is collaborating with the supervisor at TC

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2017

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

CENTRALESUPELEC
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 171 349,20
Adres
PLATEAU DE MOULON 3 RUE JOLIOT CURIE
91192 GIF SUR YVETTE
Francja

Zobacz na mapie

Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 171 349,20

Partnerzy (1)

Moja broszura 0 0