European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

HierARchical Multiscale NanoInterfaces for enhanced Condensation processes

Cel

This proposal focuses on key challenges facing human society: continuously increasing global demands for electricity as well as potable drinking water. Our long term vision consists of developing solutions related to water utilization for significant enhancement in i) efficiency of thermal power generation and ii) water harvesting to reduce the shortfall in global fresh water supply. The novel concepts that we propose rely on the realization of: 1) Precisely engineered, random yet hierarchical interface nanotextures, also with, controllable directionality, 2) Introducing a new norm of random biphilicity in the above interfaces at the submicron level, 3) Realization of novel superhydrophobic membranes through controlled coating of commercial hollow fiber membranes. 4) Novel methods of nanometrology to precisely and rationally describe the complex interfaces. Concept 1 is related to heat transfer exchange via dropwise condensation, where we target lifetime performance relevant to industrial surface condensers, while maximizing their heat transfer coefficient by up to an order of magnitude. By employing concept 2 we target novel material systems focusing on dew water harvesting in humid environments. Concept 3 targets new surface modification approaches for commercial membranes to achieve high efficiency in water desalination while ensuring anti-biofouling. For all the three concepts described above, a key component of our work will be to ensure economic scalability, of the precisely controlled textures, to large surface areas so that they can be converted to industrial products. For achieving optimal design, quantification and repeatable manufacturability of the aforementioned systems, we will employ novel metrology methods for hierarchical surfaces (concept 4) which will provide important theoretical feedback and understanding of the influence of critical surface structural parameters, through the entire project duration.

Zaproszenie do składania wniosków

H2020-FETOPEN-2016-2017

Zobacz inne projekty w ramach tego zaproszenia

Szczegółowe działanie

H2020-FETOPEN-1-2016-2017

Koordynator

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Wkład UE netto
€ 1 081 971,25
Adres
Raemistrasse 101
8092 Zuerich
Szwajcaria

Zobacz na mapie

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity
€ 1 081 971,25

Uczestnicy (4)