Opis projektu
Nowe powiązania między symetrią lustrzaną, algebrami klastrowymi i teorią reprezentacji
Matematyka dostarcza języka, za pomocą którego można opisać nasz wszechświat. Teoria strun, zgodnie z którą cząstki są w rzeczywistości maleńkimi drgającymi strunami, stanowi jedną z najbardziej obiecujących koncepcji pozwalających zunifikować teorię mechaniki kwantowej i ogólną teorię względności, których jak dotąd nie dało się w pełni pogodzić. Dziedzina symetrii lustrzanej, będącej naturalnym zjawiskiem, zrodziła się z teorii strun, a homologiczna symetria lustrzana stanowi jedną z jej wersji. Wspierany w ramach działań „Maria Skłodowska-Curie” projekt STABREP ma na celu opracowanie nowych powiązań między symetrią lustrzaną, algebrami klastrowymi i teorią reprezentacji poprzez wdrożenie modeli geometrycznych.
Cel
In this project, I will establish new connections between cluster algebras, mirror symmetry and representation theory through the introduction of geometric models.
Mirror symmetry is a natural phenomenon, first observed in superstring theory, consisting of two main approaches: the A-model, focused on the symplectic side of a Calabi-Yau manifold X, and the B-model, focused on the complex side of the manifold. Mirror symmetry is a duality between the two models. Based on this, Kontsevich formulated his famous homological mirror symmetry conjecture for categories. In this conjecture, the A-model is the Fukaya category of X, and the B-model is the derived category of coherent sheaves of X^. Cluster algebras were introduced in the early 2000s to provide a combinatorial framework for dual canonical bases. Many new ideas in representation theory have their origin in cluster algebras, bringing together category theory, particularly Calabi-Yau categories, combinatorics and the geometry of Riemann surfaces. In exciting recent developments cluster theory and homological mirror symmetry have been linked through scattering diagrams, opening up both theories.
In this project, I will study the connections between cluster combinatorics and scattering diagrams through Calabi-Yau algebras, which appear in a natural way in cluster theory and mirror symmetry. I will develop geometric models for the representation theory of Calabi-Yau algebras encoding, in particular, their (co)homology. This will lead to a complete understanding of these algebras and their role in the mirror symmetry program.
Dimer models are intrinsically linked to both cluster algebras and mirror symmetry. As part of my project, I will generalize dimer models to the general setting of special multiserial algebras. Both Calabi-Yau algebras and special multiserial algebras are of wild representation type and my geometric models will lead the way to an understanding of stability conditions for wild algebras.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze matematyka matematyka czysta algebra
- nauki przyrodnicze nauki fizyczne fizyka teoretyczna teoria strun
- nauki przyrodnicze matematyka matematyka czysta matematyka dyskretna kombinatoryka
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2018
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
LE1 7RH Leicester
Zjednoczone Królestwo
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.