Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Safe data-driven control for human-centric systems

Opis projektu

Bardziej ludzkie technologie cyfrowe

Ważne jest, aby postęp technologiczny wspomagał działania człowieka w dziedzinie opieki zdrowotnej, mobilności i systemów infrastruktury. Na przykład, aby uczynić opiekę zdrowotną bardziej przyjazną człowiekowi, potrzebne są interfejsy cyfrowe pozwalające zwiększyć możliwości interakcji człowieka z systemem. Jest to cel systemów zorientowanych na człowieka, w których człowiek jest zarówno elementem systemu sterowania, jak i kryterium projektowym. W ramach finansowanego przez UE projektu CO-MAN opracowane zostaną ramy dla kontroli dostosowanej do użytkownika i opartej na danych, uwzględniającej gwarancje wydajności. Największym wyzwaniem będzie połączenie probabilistycznych nieparametrycznych technik modelowania zaczerpniętych z teorii uczenia statystycznego z nowymi metodologiami kontroli ze świadomością ryzyka przy jednoczesnym uwzględnieniu aktywnego modelowania użytkownika. Prace te powinny przyczynić się do rozwoju niezawodnych systemów uczenia maszynowego i uzyskania nowych rezultatów przesuwających granice teoretyczne zachowań dotyczących uczenia.

Cel

Many control systems of the future involve a tight interaction or even symbiosis with the human user. High-impact application domains of human-centric systems include healthcare, mobility, and infrastructure systems. In human-centric systems the human is both, an element of the control system, and a design criterion with individual requirements that need to be satisfied. Safety - despite the high uncertainty of human behavior - and maximization of individual user experience are the primary objectives for control design in human-centric systems. The visionary goal of CO-MAN is to contribute to the fundamental understanding and principled approach to the control of smart human-centric systems. We will develop a novel framework for user-adaptive data-driven control with performance guarantees in order to address the scientific challenges of high uncertainty and individual user requirements. The grand challenge is to unify the two previously separate paradigms of model-based control with its rigorous guarantees but limited modeling base and machine learning algorithms with its flexible modeling concepts but lack of guarantees. The breakthrough enabling idea is to merge probabilistic non-parametric modeling techniques from statistical learning theory with novel risk-aware control methodologies while including active user modeling. The game changer is the current push towards reliable machine learning with novel results on theoretical bounds for learning behavior. Because of favorable properties we will focus on Gaussian Processes to model user behavior and preferences and translate the naturally quantified model uncertainty into closed loop behavior guarantees through a confidence-driven human-interactive control approach. The PI is in a perfect position to achieve the envisioned goal of super-individualized data-driven control with performance guarantees given the highly visible preliminary results and leadership in the area of human-cyber-physical systems.

System finansowania

ERC-COG - Consolidator Grant

Instytucja przyjmująca

TECHNISCHE UNIVERSITAET MUENCHEN
Wkład UE netto
€ 1 999 975,00
Adres
Arcisstrasse 21
80333 Muenchen
Niemcy

Zobacz na mapie

Region
Bayern Oberbayern München, Kreisfreie Stadt
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity
€ 1 999 975,00

Beneficjenci (1)