Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Objective home-based EEG prediction of aMCI: Identification of a predictive electrophysiological model of cognitive function in amnesic mild cognitive impairment.

Opis projektu

Model predykcyjny demencji

Demencja to grupa postępujących schorzeń mózgu powiązanych z wiekiem, takich jak choroba Alzheimera, na którą chorują miliony osób dorosłych w Europie. Chorobę Alzheimera poprzedzają zwykle amnezyjne łagodne zaburzenia poznawcze charakteryzujące się problemami z pamięcią i zapamiętywaniem. Możliwość szybkiego zdiagnozowania i scharakteryzowania amnezyjnych łagodnych zaburzeń poznawczych ułatwiłoby wczesne rozpoczęcie leczenia, a tym samym opóźniłoby rozwój choroby. Naukowcy z finansowanego przez UE projektu ID-earlyMCI proponują zastosować elektroencefalografię (EEG) oprócz ćwiczeń behawioralnych, aby zmierzyć aktywność mózgu u pacjentów i opracować model predykcyjny funkcji poznawczych. Badacze wykorzystają zaawansowane metody uczenia maszynowego do przeanalizowania dużej bazy danych EEG, aby poprawić opiekę zdrowotną nad pacjentami z amnezyjnymi łagodnymi zaburzeniami poznawczymi.

Cel

Dementia is an umbrella term for age-related brain disease, of which Alzheimer’s Disease (AD) is the most common. Around 5-7% of adults over 60 years suffer dementia worldwide, with approx. 8.7 m people in the EU. A frequent precursor of AD is amnestic mild cognitive impairment (aMCI), a clinical condition characterised by declines in memory skills. By predicting
aMCI progression, health-care services will have new opportunities to deliver early interventions that could delay AD onset. This will ultimately promote functional independence in vulnerable adults and meet the societal challenge Health, Demographic Change and Wellbeing of Horizon 2020.

Clinical outcomes of aMCI patients are influenced by the severity of cognitive (dys-) function. However, these deficits may occur at an advanced stage of neurodegeneration. This fellowship aims to identify a predictive model of cognitive function based on brain activity measured with electro-encephalography (EEG). Previous studies suggest that the capacity to learn a new task (practice effects) can help classify a person into healthy, aMCI or AD. Also, cross-sectional studies using EEG have found differences between normal controls, aMCI and AD patients during rest and cognitive tasks. The behavioural and EEG evidence combined shows the potential of using behavioural practice and EEG measures to predict cognitive function.

This potential will be investigated and exploited in this fellowship via advanced machine learning methods on a large EEG
data sample. This fellowship will take place in BrainWaveBank (BWB), an innovative company developing the largest database of EEG data in older adults along with cutting-edge analytics. This fellowship will allow the researcher to apply her experience on neural engineering and expand her knowledge and expertise to machine learning and clinical neuroscience in BWB. This will build the researcher’s independence and build prospects for a career in the medical technology sector.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2019

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

BRAINWAVEBANK LTD.
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 184 590,72
Adres
THE INNOVATION CENTRE, UNIT 4, QUEE
BT39DT BELFAST
Zjednoczone Królestwo

Zobacz na mapie

MŚP

Organizacja określiła się jako MŚP (firma z sektora małych i średnich przedsiębiorstw) w czasie podpisania umowy o grant.

Tak
Region
Northern Ireland Northern Ireland Belfast
Rodzaj działalności
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 184 590,72
Moja broszura 0 0