Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Decomposition methods for discrete problems

Opis projektu

Rozkład sprawia, że problemy z zakresu teorii grafów stają się bardziej przystępne

Teoria grafów to bardzo ważny obszar matematyki dyskretnej, który pozwala badać pewne obiekty metodami geometrycznymi. Pozwala ona klasyfikować i przedstawiać dane jako zbiór krawędzi (ścieżek) i wierzchołków (węzłów). Stosuje się ją w wielu dziedzinach, od reprezentowania wzajemnych relacji między obiektami na platformach mediów społecznościowych po optymalizację najkrótszych ścieżek w systemach GPS. Finansowany ze środków UE projekt BOBR ma doprowadzić do przesunięcia granic wiedzy o metodach rozkładu w teorii grafów. Jego celem jest umożliwienie rozkładu złożonych problemów na mniejsze, łatwiejsze do prześledzenia, ze szczególnym uwzględnieniem algorytmów parametryzowanych i aproksymacyjnych.

Cel

The main goal of the project is to radically expand our understanding of decomposition methods for discrete problems, with a particular focus on the design of parameterized and approximation algorithms on graphs. We will concentrate on four topics where we see a potential for either establishing new directions, or reaching far beyond the current state of the art.

(Beyond) Sparsity: The field of Sparsity is a rapidly developing area of graph theory that studies abstract notions of uniform sparseness in graphs and provides a wealth of tools for algorithm design. While there are still many unknowns within this field, we would like to reach beyond sparse graphs by developing a theory of well-structured dense graphs, inspired by the advances in Sparsity.

Parameterized dynamic algorithms: The idea of parameterization has so far received little attention in the field of dynamic algorithms. Our goal is to establish solid foundations for the direction of parameterized dynamic algorithms by providing dynamic variants of basic decomposition tools used in parameterized complexity.

Parameterization and approximation on planar graphs: The areas of parameterized algorithms and of approximation schemes on planar graphs share a core set of decomposition techniques and benefit from extensive cross-inspiration. We will approach several intriguing questions in this area while focusing on the idea of parameterized approximation schemes, where parameterization and approximation is explicitly combined.

Forbidding induced subgraphs: Structural graph theory offers a wealth of tools for understanding structure in graph classes characterized by forbidding induced subgraphs. This structure, while elusive and difficult to exploit, often leads to surprising tractability results. Motivated by recent advances, we propose to focus on finding general-use techniques for designing subexponential-time, approximation, and parameterized algorithms in this setting.

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-STG - Starting Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2020-STG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

UNIWERSYTET WARSZAWSKI
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 355 688,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 355 688,00

Beneficjenci (1)

Moja broszura 0 0