Opis projektu
Algebry klastrowe w teorii reprezentacji i teorii pola
Ścisłe powiązania odkryte w ciągu ostatnich 30 lat między teorią Cherna-Simonsa, supersymetryczną (SUSY) teorią z cechowaniem i teorią reprezentacji grup kwantowych doprowadziły do gwałtownego wzrostu aktywności badawczej w matematyce i fizyce. Finansowany ze środków UE projekt NCST wykorzysta rozmaitości klastrów kwantowych do opracowania pozytywnej teorii reprezentacji grup kwantowych i niekompaktowego odpowiednika teorii Cherna-Simonsa. Pozwoli również uzyskać nowe niezmienniki połączeń i rozmaitości trójwymiarowych oraz ustanowi nowe połączenia między teoriami SUSY z cechowaniem a kwantowymi rozmaitościami charakterystycznymi. Projekt będzie opierał się na wcześniejszych pracach prowadzonych przez jego uczestników, którzy udowodnili fundamentalne przypadki hipotezy funktora modularnego Focka–Goncharova w wyższej teorii Teichmüllera oraz hipotezę Gaiotto o istnieniu struktur klastrowych w niektórych teoriach SUSY z cechowaniem.
Cel
Over the past 30 years, deep connections between Chern–Simons theory, supersymmetric (SUSY) gauge theory, and representation theory of quantum groups, have caused an avalanche of research in mathematics and physics. In this proposal I use quantum cluster varieties to develop positive representation theory of quantum groups and a non-compact analogue of Chern–Simons theory. I also obtain new invariants of links and 3-manifolds, and establish new connections between SUSY gauge theories and quantum character varieties. This proposal builds on my prior work, where I prove fundamental cases of the Fock–Goncharov modular functor conjecture in higher Teichmüller theory, and Gaiotto’s conjecture on the existence of cluster structure on K-theoretic Coulomb branches of 3d N = 4 SUSY gauge theories. The proposal is split into the following four projects:
1. Prove the modular functor conjecture and extend it to a non-compact analogue of Chern–Simons theory. Obtain new powerful invariants of links and 3-manifolds.
2. Develop positive representation theory: construct continuous braided monoidal category from positive representations, prove non-compact Peter–Weyl theorem, obtain explicit formulas for finite-dimensional 6j-symbols, prove that the category of positive representations of quantum groups in type A is equivalent to a fusion category in Toda conformal field theory.
3. Describe cluster structure on K-theoretic Coulomb branches of 3d N = 4 SUSY gauge theories, conjectured by Gaiotto. Obtain cluster structure on spherical double affine Hecke algebra, and Slodowy intersections. Provide an algorithm, identifying certain theories of class S with quiver gauge theories.
4. Relate cluster quantization of character varieties with the topological quantum field theory constructed by Ben-Zvi, Brochier, and Jordan. Use it to obtain a canonical quantization of the A-polynomial.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
ERC-STG - Starting Grant
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) ERC-2020-STG
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaInstytucja przyjmująca
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
EH8 9YL Edinburgh
Zjednoczone Królestwo
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.