Projektbeschreibung
Primzahl-2-Barrieren aus dem Weg räumen und Grundlagen der speziellen K-Theorien enträtseln
Die allgegenwärtige quadratische Funktion ist ein Polynom zweiten Grades. Dabei ist der höchste Exponent eines Terms 2 und wird als Term zweiten Grades oder quadratisch bezeichnet. Quadratische Formen sind spezielle nichtlineare Polynome, die nur Terme zweiter Ordnung aufweisen. Mit anderen Worten: Es sind homogene Polynome zweiten Grades. Sie kodieren sogenannte Quadriken, eine Verallgemeinerung der Kegelschnitte, die entstehen, wenn eine zweidimensionale Ebene einen Kegel „schneidet“, und aus Ellipsen, Parabeln und Hyperbeln bestehen. Die Theorie der quadratischen Formen ist daher sehr empfindlich gegenüber der Primzahl 2. Das EU-finanzierte Projekt MRKT wird die K-Theorie der quadratischen Formen erweitern und dabei auf einem neuartigen Rahmen aufbauen, der Barrieren beseitigt und die durch die Primzahl 2 auferlegten Feinheiten berücksichtigt.
Ziel
Quadratic forms are ubiquitous throughout mathematics, playing a fundamental role in areas from arithmetic through algebra and geometry. In surgery theory, quadratic forms feature prominently in the classification of smooth manifolds in a given homotopy type, while in arithmetic geometry they can be used to encode Galois and motivic cohomology classes via Milnor's conjecture. The theory of quadratic forms is naturally very sensitive to the prime 2. While in surgery theory this effect is critical, in algebraic geometry it was often set aside by assuming 2 to be invertible in all ground rings. A recent joint work of the PI and collaborators on the foundations of Hermitian K-theory uses state-of-the-art tools from higher category theory to develop a new framework for the subject, bringing a bordism theoretical approach to the algebraic study of quadratic forms, all while accommodating for the subtleties posed by the prime 2.
Building on this recent success, the project MRKT aims to remove the theoretical barrier of the prime 2 from the study of Hermitian K-theory in the domain of algebraic geometry, and set up the foundations of motivic Hermitian K-theory and real algebraic K-theory over the integers.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Medizin- und Gesundheitswissenschaften Klinische Medizin Chirurgie
- Naturwissenschaften Mathematik reine Mathematik Algebra
- Naturwissenschaften Mathematik reine Mathematik Geometrie
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
ERC-STG - Starting Grant
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2020-STG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
75794 PARIS
Frankreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.