Opis projektu
Odkrywanie fundamentów szczególnych K-teorii dzięki pokonaniu barier teoretycznych
Wszechobecna funkcja kwadratowa jest wielomianem drugiego stopnia – najwyższym wykładnikiem dowolnego wyrazu jest 2, mamy wówczas do czynienia z wyrazem drugiego stopnia lub kwadratowym. Formy kwadratowe są szczególnym przypadkiem wielomianów nieliniowych obejmujących wyłącznie wyrazy drugiego rzędu – wielomiany jednorodne drugiego stopnia. Kodują one tak zwane powierzchnie kwadratowe, uogólnienia przekrojów stożkowych tworzonych poprzez przecięcie płaszczyzny dwuwymiarowej przez stożek, składające się z elips, paraboli i hiperbol. Teoria form kwadratowych jest zatem bardzo wrażliwa na liczbę 2. Zespół finansowanego ze środków Unii Europejskiej projektu MRKT zamierza rozszerzyć K-teorię form kwadratowych opierając się na nowatorskich ramach, które pozwalają ominąć przeszkody i przyjrzeć się bliżej określonym obszarom teorii.
Cel
Quadratic forms are ubiquitous throughout mathematics, playing a fundamental role in areas from arithmetic through algebra and geometry. In surgery theory, quadratic forms feature prominently in the classification of smooth manifolds in a given homotopy type, while in arithmetic geometry they can be used to encode Galois and motivic cohomology classes via Milnor's conjecture. The theory of quadratic forms is naturally very sensitive to the prime 2. While in surgery theory this effect is critical, in algebraic geometry it was often set aside by assuming 2 to be invertible in all ground rings. A recent joint work of the PI and collaborators on the foundations of Hermitian K-theory uses state-of-the-art tools from higher category theory to develop a new framework for the subject, bringing a bordism theoretical approach to the algebraic study of quadratic forms, all while accommodating for the subtleties posed by the prime 2.
Building on this recent success, the project MRKT aims to remove the theoretical barrier of the prime 2 from the study of Hermitian K-theory in the domain of algebraic geometry, and set up the foundations of motivic Hermitian K-theory and real algebraic K-theory over the integers.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- medycyna i nauki o zdrowiu medycyna kliniczna chirurgia
- nauki przyrodnicze matematyka matematyka czysta algebra
- nauki przyrodnicze matematyka matematyka czysta geometria
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
ERC-STG - Starting Grant
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) ERC-2020-STG
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaInstytucja przyjmująca
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
75794 PARIS
Francja
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.