Opis projektu
Postęp w zrozumieniu geometrii Gromova-Wittena i geometrii enumeratywnej
W matematyce niezmienniki Gromova-Wittena to liczby wymierne, które pozwalają liczyć krzywe algebraiczne spełniające określone warunki w danych rozmaitościach algebraicznych. Zespół finansowanego z działań „Maria Skłodowska-Curie” projektu LOGEO ma na celu zastosowanie niezmienników Gromova-Wittena do rozwiązywania problemów z różnych dziedzin matematyki: teorii liczenia snopów, symetrii lustrzanej i modułowej teorii krzywych. Badacze wykorzystają również geometrię logarytmiczną, nowy wariant geometrii algebraicznej opracowany w celu rozwiązania dwóch podstawowych problemów – zagęszczenia i degeneracji – który znacznie poszerzył wiedzę we wspomnianych dziedzinach. Oczekuje się, że wyniki projektu otworzą nowe możliwości w zakresie geometrii enumeratywnej i pogłębią wiedzę na temat liczenia krzywych.
Cel
The Gromov--Witten invariants of a space X record the number of curves in X of a given genus and degree which meet a given collection of cycles in X. Gromov--Witten theory is an extremely active field of research, and through its technical challenges attracts some of the most talented researchers at the interface of geometry with physics, who have made a lot of progress here over the last 20 years. We propose a program to apply Gromov--Witten theory to questions from a broad range of areas of mathematics: from sheaf counting theories, from mirror symmetry, and from the moduli theory of curves. The key new ingredient here is the recent significant advance in our understanding of these theories using logarithmic (log) geometry, which is a modern variant of algebraic geometry, developed to deal with two fundamental and related problems: compactification and degeneration. We will investigate solutions to these problems in interlinked areas of algebraic geometry, and use them to obtain major advances in Gromov--Witten theory. Building on the success of our previous work on log Gromov--Witten theory, we propose a program to 1) construct a computationally effective log geometric extension of sheaf counting theories, 2) develop new techniques to enumerate curves in Deligne-Mumford stacks (orbifolds) and to construct mirrors to such stacks, and; 3) investigate stability in the moduli spaces of curves along with original new connections to quiver-stability theories. Completion of these projects, will break new ground in enumerative algebraic geometry, and even if not all of the overall goals are achieved it will be a cornerstone in understanding curve-counting in different setups via modern log geometric techniques.
                                Dziedzina nauki (EuroSciVoc)
                                                                                                            
                                            
                                            
                                                Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
                                                
                                            
                                        
                                                                                                
                            Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze matematyka matematyka czysta geometria
- nauki przyrodnicze matematyka matematyka czysta algebra geometria algebraiczna
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
                                Słowa kluczowe
                                
                                    
                                    
                                        Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
                                        
                                    
                                
                            
                            
                        Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
            Program(-y)
            
              
              
                Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
                
              
            
          
                      Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
- 
                  H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
                                      GŁÓWNY PROGRAM
                                    
 Wyświetl wszystkie projekty finansowane w ramach tego programu
- 
                  H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
                                    
 Wyświetl wszystkie projekty finansowane w ramach tego programu
            Temat(-y)
            
              
              
                Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
                
              
            
          
                      
                  Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
            System finansowania
            
              
              
                Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
                
              
            
          
                      Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
              Zaproszenie do składania wniosków
                
                  
                  
                    Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
                    
                  
                
            
                          Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2020
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
2311 EZ Leiden
Niderlandy
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.
 
           
        