Opis projektu
Iterowane grupy monodromiczne rzucają światło na różne oblicza złożoności
Teoria iterowanych grup monodromicznych jest stosunkowo nową dziedziną matematyki, która powstała w punkcie styku układów dynamicznych i geometrycznej teorii grup. Grupy te zapewniają stosunkowo zwięzły i efektywny sposób kodowania układów dynamicznych, takich jak iteracje map wymiernych. Pozwoliły także na skuteczne rozwiązanie szeregu fundamentalnych problemów dotyczących dziedziny dynamiki złożonej na przestrzeni ostatnich dwóch dekad. Dzięki wsparciu z działania „Maria Skłodowska-Curie” badacze projektu CODAG zbadają strukturę i właściwości tych grup. Ich celem jest wykorzystanie tej teorii do opracowania nowych relacji pomiędzy różnymi miarami złożoności układów dynamicznych, zbiorów fraktalnych i grup.
Cel
The overall goal of the project is to study relations between different measures of complexity of dynamical systems, fractal sets, and groups. The main objects of our interest are iterated monodromy groups (IMGs), which are self-similar groups naturally associated to certain dynamical systems, such as the iteration of a rational map on the Riemann sphere. IMGs provide a prominent bridge between dynamical systems and geometric group theory, and their study has been a vibrant topic in the last 20 years. In the project, we will focus on three aspects of this modern research.
Subproject A: Decomposition theory of maps and groups
In a recent work with collaborators, I established a novel decomposition theorem for rational maps based on the structure of their Julia sets. I aim to extend this result to the case of contracting self-similar groups, which will provide a new entry to the renowned Sullivan dictionary. I will also explore computational aspects of IMGs and implement the decomposition in the computer algebra system GAP.
Subproject B: Algebraic properties of IMGs
Quite unexpectedly, the IMGs of even very simple maps provide examples of groups with interesting properties that are exotic from the point of view of classical group theory. However, we still lack general theory that will unify these nice examples. The main objective in this research direction is to relate dynamical properties of maps to algebraic properties, such as growth and amenability, of the respective IMGs.
Subproject C: Spectral properties of Schreier graphs of IMG
The study of the Laplacian spectrum and spectral measures occupies a significant place in the geometric group theory. Computations of spectra for the Schreier graphs of self-similar groups have recently been an active filed of research. Surprisingly, it connects to multidimensional dynamics and Schroedinger operators associated to aperiodic order. The goal of this subproject is to explore such connections in the case of IMGs.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze matematyka matematyka czysta algebra
- nauki przyrodnicze matematyka matematyka czysta geometria
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2021-PF-01
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
1012WX Amsterdam
Niderlandy
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.