Opis projektu
„Polskie pokrycie” odkrywa nowe powiązania między logiką a innymi dziedzinami matematyki
Topologia algebraiczna stosuje metody algebraiczne do problemów topologii – badania struktur matematycznych, których właściwości są zachowane (niezmienne) przy ciągłej deformacji. Zespół finansowanego ze środków ERBN projektu DAT opracuje unikalne podejście do topologii algebraicznej wykorzystujące logikę matematyczną, w szczególności opisową teorię zbiorów. Obiekty algebraiczne zostaną wzbogacone o dodatkowe informacje dostarczane przez tak zwane polskie pokrycie, zapewniające niezmienniki, które są dokładniejsze, bogatsze i bardziej sztywne niż czysto algebraiczne. Te niezmienniki umożliwią dostęp do problemów klasyfikacyjnych, które wcześniej były poza zasięgiem, otwierając drzwi do kompleksowych badań i lepszego zrozumienia takich problemów oraz nowych obszarów badań na styku logiki i innych dziedzin matematyki.
Cel
This project addresses fundamental issues in the development of algebraic topology, coarse geometry, and other areas of mathematics, related to the problem of doing algebra when the structures under considerations also have a topology. A number of other approaches have been proposed recently, showing the current importance of these issues for the mathematical community. The approach followed in this project is unique, in harnessing powerful tools from mathematical logic, and especially descriptive set theory.
The fundamental idea is to enrich an algebraic object with additional information provided by a Polish cover, which is an explicit presentation of the given object as a suitable quotient of a structure endowed with a compatible Polish topology. The goal of this project is to show that fundamental invariants from homological algebra, algebraic topology, operator algebras, and coarse geometry, such as Ext, Cech cohomology, KK-theory, and coarse K-homology, can be seen as functors to the category of groups with a Polish cover. Furthermore, doing so provides invariants that are finer, richer, and more rigid than the purely algebraic ones.
These invariants will allow us to tackle classifications problems for topological spaces, coarse spaces, C*-algebras, and maps, that had been so far out of reach. Furthermore, we will use these invariants to calibrate the complexity of such classification problems from the perspective of Borel complexity theory. In turn, this will enable us to isolate complexity-theoretic consequences of the Universal Coefficient Theorem for C*-algebras and of the coarse Baum-Connes Conjecture for coarse spaces, and to construct examples of strong failure of such results.
Ultimately, the completion of this project will lead to the development of entirely new fields of research at the interface between logic and other areas of mathematics (algebraic topology, coarse geometry, operator algebras).
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze matematyka matematyka czysta topologia
- nauki przyrodnicze matematyka matematyka czysta algebra
- nauki przyrodnicze matematyka matematyka czysta geometria
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
HORIZON.1.1 - European Research Council (ERC)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
HORIZON-ERC - HORIZON ERC Grants
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) ERC-2022-STG
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaInstytucja przyjmująca
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
40126 Bologna
Włochy
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.