Opis projektu
Rozszerzenie zakresu korespondencji Langlandsa
Korespondencja Langlandsa, jedno z głównych przypuszczeń w matematyce, została nazwana teorią unifikującą matematykę. Finansowany przez Europejską Radę ds. Badań Naukowych projekt Correspondence ma na celu zbadanie trzech aspektów tej korespondencji. Pierwszym z nich jest ogólny opis widma algebr Heckego na przestrzeni wytworzonej przez pseudo-szeregi Eisensteina cuspidalnych form automorficznych podgrup Leviego, czego uczony prowadzący to badanie dowiódł w najprostszym przypadku. Drugim jest rozszerzenie korespondencji Langlandsa na zupełnie nowy obszar, co może prowadzić do odkrycia nowych powiązań między teorią reprezentacji a teorią liczb. Ostatnim aspektem jest kategoryzacja korespondencji Langlandsa, niezbędna do ustalenia jej silnej formy.
Cel
R. Langlands conjectured the existence of a correspondence between automorphic spectrums of Hecke algebras and representations of Galois groups of global fields. The existence of such correspondence is one of the main conjectures in mathematics. Even if not known in full generality it leads to proofs of Ferma and Sato-Tate conjectures.
This project is on three aspects of the Langlands correspondence. The first part of this project is a description of the spectrum of Hecke algebras on the space generated by pseudo Eisenstein series of cuspidal automorphic forms of Levi subgroups. In the simplest non-trivial case, the precise description is a conjecture of Langlands. This conjecture is proven in my work with A. Okounkov, by an unexpected topological interpretation. I expect this approach to work in a number of other cases.
The second part of this project is an extension of the Langlands correspondence to a completely new area of fields of rational functions on curves over local fields. This extension of the Langlands correspondence to a new area could lead to new interplays between Representation Theory and Number Theory.
The third part of the project is on a categorification of the Langlands correspondence necessary for establishing the strong form of this correspondence.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Słowa kluczowe
- Langlands
- Representations
- Categorification
- G-equivariant bordism
- local fields
- automorphic forms
- 1
- 2- forms
- Hecke correspondence
- Hecke operators
- categorical trace
- symmetric infinity categories
- nilpotent singular support
- Eisenstein series
- the Springer stack
- Opers
- reductive group
- global and local fields
- dual group
- curves
- global differential operators on the stack of $G$-bundles
- cohomologically proper quotient stack
Program(-y)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Temat(-y)
System finansowania
HORIZON-ERC - HORIZON ERC GrantsInstytucja przyjmująca
91904 Jerusalem
Izrael