Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-05-30

Frobenius Manifolds and Hamiltonian Partial Differential Equations

Cel

The basic idea of the project is to apply methods and results of the theory of integrable systems to non-integrable PDEs. We do not promise to solve any PDE; however, in certain strongly nonlinear regimes, solutions to a conservative non-integrable PDE exhibit integrable behaviour. The realization of this idea, supported by some preliminary analytical and numerical results, will consist of three main tasks: 1) classify normal forms of quasilinear Hamiltonian PDEs and their perturbations; 2) reduce the lists of asymptotic solutions to an abridged list of universal forms represented via Painlevé transcendents, theta-functions, etc.; 3) establish matching rules between the universal asymptotic expansions. Differential-geometric methods based on the theory of Frobenius manifolds will be crucial in solving the classification problems; analytic and algebro-geometric techniques applied to the Hurwitz spaces of Riemann surfaces will be instrumental in the description of nonlinear oscillatory regimes; selected solutions to Painlevé equations and their generalizations will be needed for the analytic description of transitions from regular to oscillatory behaviour. The project is aiming at creation of an online library of the main qualitative types of behaviour of solutions to large classes of nonlinear evolutionary PDEs supplied with analytic expressions, numerical codes and visualization tools, as well as with tests of existence of a Hamiltonian structure, integrability or almost integrability. Such a library will both stimulate the research in the field and lead to a high visibility of the project.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2008-AdG
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-AG - ERC Advanced Grant

Instytucja przyjmująca

SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Wkład UE
€ 864 000,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0