Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Equidistribution in number theory

Cel

The purpose of this proposal is to investigate from various perspectives some equidistribution problems associated with homogeneous spaces of arithmetic type: a typical problem (basically solved) is the distribution of the set of representations of a large integer by an integral quadratic form. Another harder problem is the study of the distribution of special points on Shimura varieties. In a different direction (linked with quantum chaos), the study of the concentration of Laplacian (Maass) eigenforms or of sections of holomorphic bundles is related to similar problems. Given X such a space and G>L the underlying algebraic group and its corresponding lattice L, the above questions boil down to studying the distribution of H-orbits x.H (or more generally H-invariant measures)on the quotient L\G for some subgroups H. This question may be studied different methods: Harmonic Analysis (HA): given a function f on L\G one studies the period integral of f along x.H. This may be done by automorphic methods. In favorable circumstances, the above periods are related to L-functions which one may hope to treat by methods from analytic number theory (the subconvexity problem). Ergodic Theory (ET): one studies the properties of weak*-limits of the measures supported by x.H using rigidity techniques: depending on the nature of H, one might use either rigidity of unipotent actions or the more recent rigidity results for torus actions in rank >1. In fact, HA and ET are intertwined and complementary : the use of ET in this context require a substantial input from number theory and HA, while ET lead to a soft understanding of several features of HA. In addition, the Langlands correspondence principle make it possible to pass from one group G to another. Based on earlier experience, our goal is to develop these interactions systematically and to develop new approaches to outstanding arithmetic problems :eg. the subconvexity problem or the Andre/Oort conjecture.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2008-AdG
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-AG - ERC Advanced Grant

Instytucja przyjmująca

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Wkład UE
€ 866 000,00
Adres
BATIMENT CE 3316 STATION 1
1015 LAUSANNE
Szwajcaria

Zobacz na mapie

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0