Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-05-28

Hilbert's 13th Problem

Cel

The aim of this fellowship is to enable Dr Christopher Good, as Scientist in Charge, and Dr Ziqin Feng, as Researcher, to carry out some innovative and mutually beneficial research utilizing their complementary skill sets.

The 13th Problem from Hilbert's famous list asks whether every continuous (respectively smooth) function of three variables can be written as a superposition (or, in modern parlance, composition) of continuous (respectively smooth) functions of two variables. Hilbert conjectured that the answer to this problem was `no.' However, in 1957, Kolmogorov together with his student Arnold gave a positive solution in the continuous case: every continuous function of n variables taken from the closed unit interval can be represented as a linear superposition of one-variable functions and the two-variable function addition. One might expect this result to have applications (for example to data analysis), since it allows for multi-dimensional functions to be expressed as `simpler' functions of one variable and addition. However, whilst being of great theoretical interest, Kolmogorov's result is highly non-constructive and does not obviously allow for this. Together with Professor Paul Gartside, Feng has made highly non-trivial extensions to Kolmogorov's theorem that suggest ways around these restrictions. This project aims to realize potential applications by providing improved algorithms, implementing the extensions in high-level computer code.
Vitushkin gave a negative answer to the smooth (differentiable) version of Hilbert's 13th problem in 1954, proving, in particular, that there are continuously differentiable functions of three variables which can not be written as a superposition of continuously differentiable functions of two variables. The project also aims to investigate just how smooth one can take the functions arising in Kolmogorov's theorem to be. Questions along these lines will be addressed through combinatorical analysis of Vitushkin's work, the topology of critical points, and approximation theory in function spaces.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

FP7-PEOPLE-2011-IIF
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MC-IIF - International Incoming Fellowships (IIF)

Koordynator

THE UNIVERSITY OF BIRMINGHAM
Wkład UE
€ 209 033,40
Adres
Edgbaston
B15 2TT Birmingham
Zjednoczone Królestwo

Zobacz na mapie

Region
West Midlands (England) West Midlands Birmingham
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0