Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Symplectic Aspects of Weak KAM theory

Cel

"The least action principle is one of the most classical tools in the study of convex Hamiltonian systems. It consists in finding specific orbits by minimizing the Lagrangian action functional. Another powerful classical tool in Hamiltonian dynamics is the theory of canonical transformations, which provides a large class of admissible changes of coordinates, allowing to put many systems into simplified normal forms.
These two tools are difficult to use simultaneously because the Lagrangian action does not behave well under canonical transformations. A large part of the development of symplectic geometry in the second half of the last century consisted in bridging this gap, by developing a framework encompassing a large part of both theories. For example, the direct study of the Hamiltonian action functional (which, as opposed to the Lagrangian action functional, behaves well under canonical transformations) allowed to recover, refine, and generalize beyond the convexity hypothesis, most of the results concerning the existence of periodic orbits which had been proved with the least action principle.
Twenty years ago, under the impulsion of John Mather, a renewed use of the least action principle led to the proof of the existence of complicated invariant sets and unstable orbits. This collection of new methods has been called weak KAM theory in view of some similarities with the classical KAM theory.
Weak KAM theory, however, uses the least action principle in such a fundamental way that it does not not enter yet into the symplectic framework. My project is to address this problem. This overarching goal federates a number of questions in weak KAM theory, in Hamiltonian dynamics, in symplectic geometry and even in partial differential equations which will be the starting directions of my investigations."

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2012-StG_20111012
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-SG - ERC Starting Grant

Instytucja przyjmująca

UNIVERSITE PARIS DAUPHINE
Wkład UE
€ 840 000,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0