Opis projektu
Konstrukcja przestrzeni moduli o rozmaitości algebraicznej w przestrzeniach wysokowymiarowych
W geometrii algebraicznej stabilne rozmaitości, opracowane przez Kollára i Shepherd-Barrona, są uogólnieniami o dużej liczbie wymiarów stabilnych krzywych. Ich przypuszczenie dotyczące przestrzeni moduli klasyfikuje gładkie rozmaitości projekcyjne aż do równoważności biracjonalnej, dokonując jednocześnie uzwarcenia projekcyjnego. To ostatnie jest niezbędne do zastosowania geometrii algebraicznej do samej przestrzeni moduli. W ramach finansowanego ze środków UE projektu MODSTABVAR powstanie surowa przestrzeń moduli stabilnych powierzchni o stałej objętości nad liczbami całkowitymi. Będzie się to wiązało z przedstawieniem programu modeli minimalnych dla trójwymiarowej rozmaitości algebraicznej, który jest projekcyjny nad pierścieniem podstawowym o mieszanej charakterystyce z jednym wymiarem. Wyniki projektu będą ważne dla takich dziedzin jak geometria algebraiczna i arytmetyka o rozmaitościach z dużą liczbą wymiarów.
Cel
                                Stable varieties, originally introduced by Kollár and Shepherd-Barron, are higher dimensional generalizations of the algebro-geometric notion of stable curves from many perspectives. Their partially conjectural moduli space classifies smooth projective varieties of general type up to birational equivalence, and it also provides a projective compactification for this classifying space. The latter is essential for applying algebraic geometry to the moduli space itself. Furthermore, over the complex numbers, stable varieties can be also defined surprisingly as the projective varieties admitting a negative curvature (singular) Kähler-Einstein metric by the work of Berman and Guenancia, or as the canonically polarized K-stable varieties by Odaka. 
The fundamental objective of the project is to construct the coarse moduli space of stable surfaces with fixed volume over the integers (possibly excluding finitely many primes, not depending on the volume). In particular this involves showing the Minimal Model Program for 3-folds that are projective over a 1 dimensional mixed characteristic base. The main motivations are applications to the general algebraic geometry and arithmetic of higher dimensional varieties.
The above fundamental goal is also an incarnation of Grothendieck's philosophy that algebraic geometry statements should be proved in a relative setting. This was implemented right at the beginning for stable curves, but it has not been possible to attain for stable varieties of higher dimensions, due to the lack of technology. Hence, the project aims to establish new technology in mixed and positive characteristic geometry based on recent developments, such as modern Minimal Model Program, the vanishings given by balanced big Cohen-Macaulay algebras (the existence of which was shown by André using Scholze's perfectoid theory), trace method for lifting sections, p-torsion cohomology killing via alterations (by Bhatt), torsor method on singular varieties, etc.
                            
                                Dziedzina nauki (EuroSciVoc)
                                                                                                            
                                            
                                            
                                                Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
                                                
                                            
                                        
                                                                                                
                            Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze matematyka matematyka czysta algebra
- nauki przyrodnicze matematyka matematyka czysta geometria
- nauki przyrodnicze matematyka matematyka czysta arytmetyka liczby pierwsze
- nauki humanistyczne filozofia, etyka i religia filozofia
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
                                Słowa kluczowe
                                
                                    
                                    
                                        Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
                                        
                                    
                                
                            
                            
                        Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
            Program(-y)
            
              
              
                Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
                
              
            
          
                      Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
- 
                  H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
                                      GŁÓWNY PROGRAM
                                    
 Wyświetl wszystkie projekty finansowane w ramach tego programu
            Temat(-y)
            
              
              
                Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
                
              
            
          
                      
                  Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
            System finansowania
            
              
              
                Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
                
              
            
          
                      Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
ERC-STG - Starting Grant
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
              Zaproszenie do składania wniosków
                
                  
                  
                    Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
                    
                  
                
            
                          Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) ERC-2018-STG
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaInstytucja przyjmująca
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
1015 LAUSANNE
Szwajcaria
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.
 
           
        