Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Interactions between Groups, Orbits, and Cartans

Opis projektu

Podalgebra Cartana może zwiększyć nasze zrozumienie istotnych problemów matematycznych

Podalgebry Cartana stanowią pomost łączący algebry C*, dynamikę topologiczną i geometryczną teorię grup. Ostatnio zwróciły też uwagę uczonych pracujących nad finansowanym ze środków UE projektem IGOC. Naukowcy postawili sobie za cel jest wskazanie, w jaki sposób podalgebry Cartana oraz powiązane z nimi pojęcia mogą pomóc w rozwiązaniu czterech zasadniczych problemów, które nadal pozostają bez odpowiedzi – uniwersalnej teorii mnożników, hipotezy Bauma–Connesa, problemu sprzężoności w przesunięciach topologicznych i kwazi-izometrycznej sztywności grup policyklicznych. Projekt ma doprowadzić do zainicjowania wspólnych działań na kilku obszarach matematyki. Jakikolwiek postęp w którymkolwiek ze wskazanych czterech problemów powinien doprowadzić do istotnych przełomów.

Cel

Recently, we discovered that the notion of Cartan subalgebras builds bridges between C*-algebras, topological dynamics, and geometric group theory. The goal of this research project is to develop our understanding of this concept in order to attack the following major open questions:

I. The UCT question
II. The Baum-Connes conjecture
III. The conjugacy problem for topological shifts
IV. Quasi-isometry rigidity for polycyclic groups

UCT stands for Universal Coefficient Theorem and is a crucial ingredient in classification. I want to make progress on the open question whether sufficiently regular C*-algebras satisfy the UCT, taking my joint work with Barlak as a starting point.
The Baum-Connes conjecture predicts a K-theory formula for group C*-algebras which has far-reaching applications in geometry and algebra as it implies open conjectures of Novikov and Kaplansky. My new approach to II will be based on Cartan subalgebras and the notion of independent resolutions due to Norling and myself.
Problem III asks for algorithms deciding which shifts are topologically conjugate. It has driven a lot of research in symbolic dynamics.
Conjecture IV asserts that every group quasi-isometric to a polycyclic group must already be virtually polycyclic. A solution would be a milestone in our understanding of solvable Lie groups.
To attack III and IV, I want to develop the new notion of continuous orbit equivalence which (as I recently showed) is closely related to Cartan subalgebras.

Problems I to IV address important challenges, so that any progress will result in a major breakthrough. On top of that, my project will initiate new interactions between several mathematical areas. It is exactly the right time to develop the proposed research programme as it takes up recent breakthroughs in classification of C*-algebras, orbit equivalence for Cantor minimal systems, and measured group theory, where measure-theoretic analogues of our key concepts have been highly successful.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-COG - Consolidator Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2018-COG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

UNIVERSITY OF GLASGOW
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 246 761,98
Adres
UNIVERSITY AVENUE
G12 8QQ Glasgow
Zjednoczone Królestwo

Zobacz na mapie

Region
Scotland West Central Scotland Glasgow City
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 246 761,98

Beneficjenci (1)

Moja broszura 0 0