Opis projektu
Nowe spojrzenie na teorię operatorów różniczkowych cząstkowych w zwartych grupach Liego
Teoria operatorów różniczkowych cząstkowych to istotna gałąź matematyki. W ramach finansowanego z programu działań „Maria Skłodowska-Curie” projektu LieLowerBounds planowane jest zbadanie zasadności niektórych ograniczeń dolnych dla operatorów różniczkowych cząstkowych, a w ogólności dla operatorów pseudoróżniczkowych w zwartych grupach Liego. Aby uzyskać ograniczenia dolne, podczas projektu zostaną przeprowadzone badania pewnych wielkości geometrycznych powiązanych z operatorami, takich jak symbolu całkowitego, symbolu głównego i symbolu podrzędnego. Ostatecznym celem jest wykorzystanie tych podstawowych szacunków w problemach rozwiązywalności i hipoeliptyczności operatorów różniczkowych cząstkowych w zwartych grupach Liego.
Cel
The theory of partial differential operators is one of the most important branches of mathematics with several consequences in many other mathematical fields and with applications in other sciences. This project, which is of theoretical nature, intends to investigate the validity of the Fefferman-Phong, the Hörmander and the Melin inequalities for partial differential operators, and in general for pseudo-differential operators, on compact Lie groups, and apply them to the problem of solvability of degenerate partial differential operators. The analysis of partial differential operators requires the study of geometric quantities attached to the operators, in particular, the (total) symbol, the principal symbol and the subprincipal symbol. However, in the context of compact Lie groups, the principal symbol is globally well-defined but it is not the same for the other symbols mentioned above. Our goal is to define in a suitable way the other geometric quantities needed in the analysis of the problem and use them to obtain lower bounds for partial differential operators on compact Lie groups (i.e. the Fefferman-Phong, the Hörmander and the Melin inequalities). These lower bounds will be used to treat the problem of solvability of partial differential operators on compact Lie groups. We remark that the validity of these inequalities will yield the development of several results in the theory of partial differential equations on compact Lie groups, as, for instance, in the problems related to solvability, hypoellipticity, and well-posedness of the (weakly-hyperbolic) Cauchy problem.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze matematyka matematyka czysta analiza matematyczna równania różniczkowe równania różniczkowe cząstkowe
- nauki przyrodnicze matematyka matematyka czysta algebra geometria algebraiczna
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
MSCA-IF-EF-ST - Standard EF
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2018
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
9000 GENT
Belgia
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.