Opis projektu
Badania nad eliptycznymi i parabolicznymi zagadnieniami wolnego brzegu
Zagadnienia wolnego brzegu to te z modeli matematycznych opisanych cząstkowymi równaniami różniczkowymi, w których występują nieznane a priori (wolne) granice czy brzegi. Możliwie precyzyjne opisanie ich zachowań i właściwości geometrycznych to skomplikowany problem. Finansowany przez UE projekt LNLFB-Problems poświęcony jest badaniu różnych zagadnień związanych z wolnym brzegiem. Prowadzone badania będą koncentrować się na eliptycznych i parabolicznych zagadnieniach Bernoullego. Zagadnienia wolnego brzegu mają liczne zastosowania w różnych dziedzinach nauki. Zalicza się do nich między innymi kwestie przejść fazowych, filtrowanie cieczy, projektowanie optymalnych izolatorów, zagadnienia z zakresu matematyki finansowej, oddziaływań w układach cząstek czy elastyczności.
Cel
                                A wide class of physical phenomena can be mathematically formalized as Free Boundary (FB) problems, usually described by a set of Partial Differential Equations (PDEs) that exhibit also some unknown interfaces (the FB). The main goal is to describe as precisely as possible both the solution to the PDEs and the properties of the FB, an issue of significant theoretical complexity. In this project the Experienced Researcher (ER) presents different FB problems, depending on their nature: local/nonlocal and elliptic/parabolic.
 The first part is devoted to elliptic problems, with two objectives: the first one is to prove some quantitative regularity estimates for solutions to a class of elliptic semilinear equations related to Bernoulli one-phase type problems (local/nonlocal setting), while the second is to investigate the regularity/structure of the FB in a general nonlocal obstacle problem.
 Also the second part has two objectives (parabolic framework). The ER intends to study some nonlocal parabolic Bernoulli one-phase type problems. In this framework, the whole theory must be developed: the ER plans to study the existence of suitable weak solutions as well as their optimal regularity and the regularity/structure of the FB.
 The project contains innovative aspects, new techniques, and possesses a large number of applications to Physics, Engineering and Natural Sciences. The expected results are of great quality and will have significative impact in the PDEs community.
                            
                                Dziedzina nauki (EuroSciVoc)
                                                                                                            
                                            
                                            
                                                Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
                                                
                                            
                                        
                                                                                                
                            Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze matematyka matematyka czysta analiza matematyczna równania różniczkowe równania różniczkowe cząstkowe
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
                                Słowa kluczowe
                                
                                    
                                    
                                        Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
                                        
                                    
                                
                            
                            
                        Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
            Program(-y)
            
              
              
                Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
                
              
            
          
                      Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
- 
                  H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
                                      GŁÓWNY PROGRAM
                                    
 Wyświetl wszystkie projekty finansowane w ramach tego programu
- 
                  H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
                                    
 Wyświetl wszystkie projekty finansowane w ramach tego programu
            Temat(-y)
            
              
              
                Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
                
              
            
          
                      
                  Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
            System finansowania
            
              
              
                Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
                
              
            
          
                      Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
              Zaproszenie do składania wniosków
                
                  
                  
                    Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
                    
                  
                
            
                          Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2019
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
8092 Zuerich
Szwajcaria
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.
 
           
        