Wszechświat jako symfonia drgających strun
Matematyczne wzory ogólnej teorii względności Einsteina przewidywały rozszerzanie się wszechświata oraz istnienie czarnych dziur, które to zjawiska zaobserwowano potem empirycznie. Coraz bardziej skomplikowane techniki doświadczalne przynoszą istną eksplozję odkryć dotyczących interakcji zachodzących w bardzo małych skalach. Klasyczne opisy matematyczne są jednak często niewystarczające, aby móc przedstawić oddziaływania między cząstkami elementarnymi i niektóre właściwości, szczególnie po uwzględnieniu towarzyszących im efektów kwantowych. Jedną z teorii matematycznych, która zyskała dużą popularność, jest teoria strun, próbująca połączyć klasyczny i kwantowy opis wszechświata. Jej formalne matematyczne piękno zainspirowało także badaczy uczestniczących w finansowanym przez UE projekcie "String theory and noncommutative geometry" (STRING). Zgodnie z teorią strun, w sercu każdej cząstki elementarnej znajduje się maleńka struna. Cząstki różnią się między sobą ze względu na to, jak drgają znajdujące się w nich struny. Analizy matematyczne wykazały, że jedna z tych wysokości drgań posiada właściwości odpowiadające właściwościom grawitonu, hipotetycznej cząstki, która ma przenosić siłę grawitacji z jednego miejsca na drugie. Inaczej mówiąc, grawitacja i mechanika kwantowa działają według tych samych zasad. W ramach projektu STRING uczeni badali dalsze implikacje dla modeli fizycznych dotyczących grawitacji kwantowej teorii pola. Mówiąc dokładniej, prace w ramach projektu STRING koncentrowały się na możliwości zdefiniowania różnych rodzajów grup algebraicznych jako symetrii modelu fizycznego. Badano grupy wyjątkowe Liego w kontekście teorii supergrawitacji i sieciowych teorii pola. Informacje o ich właściwościach geometrycznych zastosowano następnie w celu sklasyfikowania różnych rodzajów orbit czarnych dziur. Najpierw skonstruowano grupy wyjątkowe Liego przy pomocy różnych działań algebraicznych, aby stworzyć tzw. "magiczny kwadrat" zawierający prostsze grupy Liego. Opracowano też oprogramowanie umożliwiające obliczanie generatorów grup Liego wchodzących w magiczny kwadrat. Ten napisany w języku Mathematica program można bezpłatnie pobrać tutaj(odnośnik otworzy się w nowym oknie). Omawiane prace wnoszą wkład w opis matematyczny modeli fizycznych wszechświata. Współpraca matematyków i fizyków okazała się wyjątkowo owocna i obopólnie korzystna. Poznano cechy geometryczne teorii strun, a także znaczenie tej teorii w kontekście jej wartości dla teorii informacji kwantowych.