Opis projektu
Wsparcie badań nad funkcjami wagowymi i nierównościami normatywnymi
Funkcje wagowe odgrywają fundamentalną rolę w analizie harmonicznej wykorzystywanej w badaniu podstawowych nierówności normatywnych, takich jak odwrotna nierówność Höldera dla wag Muckenhoupta i estymacja Johna-Nirenberga dla funkcji o ograniczonej średniej oscylacji. Zespół finansowanego ze środków działania „Maria Skłodowska-Curie” projektu GEOHARWeights zbada nierówności, zajmie się rozwojem teorii wag Békollé-Bonamiego i opisze geometrię domen rozszerzeń dla tych klas wag. Łącząc klasyczne narzędzia analizy harmonicznej i geometrycznej z technikami probabilistycznymi, badacze skupieni wokół projektu GEOHARWeights zamierzają znacząco rozwinąć tę dziedzinę.
Cel
"Our research focuses on the study of geometric and analytical aspects of various classes of weight functions that are ubiquitous in harmonic analysis. The main goals of this project are to substantially improve some of the well-known fundamental norm inequalities for Muckenhoupt weights (the Reverse Hölder Inequality) and BMO functions (the John-Nirenberg estimate), to continue developing the theory of Békollé-Bonami weights in all dimensions, and to describe the geometry of the extension domains for both classes of weights. Our methods combine classical tools in harmonic and geometric analysis with more sophisticated probabilistic techniques that have been employed in the theory of Calderón-Zygmund operators in the setting of non-doubling measures, and in sharp maximal inequalities.
The proposal is based at the Department of Mathematical Sciences (IMF), NTNU, Trondheim, Norway, with Karl-Mikael Perfekt as the supervisor of the fellowship.
In addition to the research outcomes, the plan include lecturing and supervising activities, dissemination of the results in conferences, and participation in outreach activities organized by the NTNU. The research will be carried out within the research group ""Fourier Analysis and Multiplicative Analysis"", at the same department, whose Principal Investigator is Kristian Seip."
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2023-PF-01
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
7491 TRONDHEIM
Norwegia
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.