Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Mathematical Aspects of Quantum Dynamics

Cel

The main goal of this proposal is to reach
a better mathematical understanding of
the dynamics of quantum mechanical
systems. In particular I plan to work
on the following three projects along
this direction. A. Effective Evolution
Equations for Macroscopic Systems.
The derivation of effective evolution
equations from first principle microscopic
theories is a fundamental task of statistical
mechanics. I have been involved in
several projects related to the derivation
of the Hartree and the Gross-Piteavskii
equation from many body quantum
dynamics. I plan to continue to work on
these problems and to use these results
to obtain new information on the many
body dynamics. B. Spectral Properties
of Random Matrices. The correlations
among eigenvalues of large random
matrices are expected to be independent
of the distribution of the entries. This
conjecture, known as universality, is
of great importance for random matrix
theory. In collaboration with L. Erdos and
H.-T. Yau, we established the validity of
Wigner's semicircle law on
microscopic scales, and we proved the
emergence of eigenvalue repulsion. In
the future, we plan to continue to study
Wigner matrices to prove, on the longer
term, universality. C. Locality Estimates in
Quantum Dynamics. Anharmonic lattice
systems are very important models in
non-equilibrium statistical mechanics.
With B. Nachtergaele, H. Raz, and R.
Sims, we proved Lieb-Robinson type
inequalities (giving an upper bound on
the speed of propagation of signals), for
a certain class of anharmonicity. Next, we
plan to extend these results to a larger
class of anharmonic potentials, and to
apply these bounds to establish other
fundamental properties of the dynamics
of anharmonic systems, such as the
existence of its thermodynamical limit.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2009-StG
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-SG - ERC Starting Grant

Instytucja przyjmująca

University of Zurich
Wkład UE
€ 269 898,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (3)

Moja broszura 0 0