Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Dimension Phenomena and Curvature Equations in Carnot Groups

Cel

The core of this project can be shortly (and roughly) described as project in Geometric Metric Theory and curvature equations in non-Euclidean structures. It is worthwhile from the very beginning to state clearly that, when we mention non-Euclidean structures, we refer to metric structures that are not Euclidean at any scale. Thus, the model we have in mind are not Riemannian manifolds, but better the so-called sub-Riemannian manifolds and fractals, or even fractals in sub-Riemannian spaces. In the last few years, sub-Riemannian structures have been largely studied in several respects, such as differential geometry, geometric measure theory, subelliptic differential equations, complex variables, optimal control theory, mathematical models in neurosciences, non-holonomic mechanics, robotics. Among all sub-Riemannian structures, a prominent position is taken by the so-called Carnot groups (simply connected Lie groups G with stratified nilpotent algebra), which play versus sub Riemannian spaces the role played by Euclidean spaces (considered as tangent spaces) versus Riemannian manifolds. The notion of dimension is crucial in our approach: the non-Euclidean character of the structures we are interested to study hides in the gap between the topological dimension of a group G and its metric dimension. Isoperimetric inequalities, analysis on fractal sets, quasiconformal and quasiregular maps are a typical manifestations of the metric dimension versus the topological dimension. In addition, dimension phenomena appear in a crucial way when dealing with intrinsic curvature in submanifolds of Carnot groups and in the curvature equations.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

FP7-PEOPLE-2009-IRSES
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MC-IRSES - International research staff exchange scheme (IRSES)

Koordynator

ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Wkład UE
€ 43 200,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Uczestnicy (2)

Moja broszura 0 0