Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

String topology and homotopy Frobenius algebras

Opis projektu

Fragmenty strun mogą nie wykazywać się taką samą niezmiennością jak całe struny

Matematyka jest dziedziną, która pozwala nam przedstawiać zjawiska fizyczne i ich wzajemne powiązania w skonkretyzowany sposób. Rozmaitości w matematyce opierają się na hipotezie mówiącej, że wysokowymiarowe dane z prawdziwego świata (na przykład obrazy cyfrowe) opierają się na niskowymiarowych rozmaitościach osadzonych w przestrzeni wysokowymiarowej. Topologia strun to obszar zajmujący się badaniem algebraicznych i różniczkowych właściwości przestrzeni topologicznej lub rozmaitości, które są niezmienne lub które należą do wszystkich innych przestrzeni charakteryzujących się matematyczną homeomorficznością (mapowaniem jeden do jednego o jeszcze bardziej rygorystycznych wymaganiach). Uczestnicy finansowanego przez Unię Europejską projektu StringFrob chcą wykazać, że topologia strun na poziomie łańcuchów (liniowych połączeń komórek w przestrzeni) nie jest niezmienna w taki sam sposób, w jaki jest niezmienna topologia strun rozpatrywana jako całość. Droga do osiągnięcia tego celu będzie wymagała opracowania szeregu kluczowych opisów matematycznych.

Cel

The ultimate goal of this action is to establish that chain-level string topology is not a homotopy invariant. This is achieved by showing that chain-level string topological structures are induced by a homotopy Frobenius structure on the cochain algebra and by connecting the homotopy Frobenius structure with known invariants from quantum field theory. This is broken down into four independent work packages. The first goal is to show that from a Chern-Simons type partition function one can construct a homotopy Frobenius algebra and show that this is essentially an equivalence between the relevant deformation spaces. The second goal is to algebraically construct string topology operations on the Hochschild homology of a homotopy Frobenius algebra. The third goal compares the induced structure on the cyclic homology with the known homotopy involutive Lie bialgebra structure. And ultimately, the fourth goal is to compare the algebraically constructed operations with geometric ones on the loop space under the comparison map given by Chen's iterated integrals.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2019

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

KOBENHAVNS UNIVERSITET
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 207 312,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 207 312,00
Moja broszura 0 0